Agnostic Phase Estimation
- URL: http://arxiv.org/abs/2403.00054v3
- Date: Fri, 19 Jul 2024 12:41:06 GMT
- Title: Agnostic Phase Estimation
- Authors: Xingrui Song, Flavio Salvati, Chandrashekhar Gaikwad, Nicole Yunger Halpern, David R. M. Arvidsson-Shukur, Kater Murch,
- Abstract summary: A paradigmatic setup features a qubit subject to an unknown rotation.
If the rotation axis is unknown, no optimal single-qubit sensor can be prepared.
Inspired by simulations of closed timelike curves, we circumvent this limitation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of quantum metrology is to improve measurements' sensitivities by harnessing quantum resources. Metrologists often aim to maximize the quantum Fisher information, which bounds the measurement setup's sensitivity. In studies of fundamental limits on metrology, a paradigmatic setup features a qubit (spin-half system) subject to an unknown rotation. One obtains the maximal quantum Fisher information about the rotation if the spin begins in a state that maximizes the variance of the rotation-inducing operator. If the rotation axis is unknown, however, no optimal single-qubit sensor can be prepared. Inspired by simulations of closed timelike curves, we circumvent this limitation. We obtain the maximum quantum Fisher information about a rotation angle, regardless of the unknown rotation axis. To achieve this result, we initially entangle the probe qubit with an ancilla qubit. Then, we measure the pair in an entangled basis, obtaining more information about the rotation angle than any single-qubit sensor can achieve. We demonstrate this metrological advantage using a two-qubit superconducting quantum processor. Our measurement approach achieves a quantum advantage, outperforming every entanglement-free strategy.
Related papers
- Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.
We show that entangled quantum states dephase with a universal rate.
We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - Achieving the fundamental quantum limit of linear waveform estimation [10.363406065066538]
In certain cases, there is an unexplained gap between the known waveform-estimation Quantum Cram'er-Rao Bound and the optimal sensitivity from quadrature measurement of the outgoing mode from the device.
We resolve this gap by establishing the fundamental precision limit, the waveform-estimation Holevo Cram'er-Rao Bound, and how to achieve it using a nonstationary measurement.
arXiv Detail & Related papers (2023-08-11T17:38:30Z) - Minimal-noise estimation of noncommuting rotations of a spin [0.9217021281095907]
We propose an analogue of $textSU (1,1)$ interferometry to measure rotation of a spin by using two-spin squeezed states.
For a specific direction and strength an advantage in sensitivity for all equatorial rotation axes over the classical bound is shown.
Our results provide a method for measuring magnetic fields in any direction in the $x$-$y$-plane with the same optimized initial state.
arXiv Detail & Related papers (2023-03-15T13:03:32Z) - Scalable Spin Squeezing from Finite Temperature Easy-plane Magnetism [26.584014467399378]
We conjecture that any Hamiltonian exhibiting finite temperature, easy-plane ferromagnetism can be used to generate scalable spin squeezing.
Our results provide insights into the landscape of Hamiltonians that can be used to generate metrologically useful quantum states.
arXiv Detail & Related papers (2023-01-23T18:59:59Z) - Optimizing one-axis twists for variational Bayesian quantum metrology [0.0]
In particular, qubit phase estimation, or rotation sensing, appears as a ubiquitous problem with applications to electric field sensing, magnetometry, atomic clocks, and gyroscopes.
We propose a new family of parametrized encoding and decoding protocols called arbitrary-axis twist ansatzes.
We show that it can lead to a substantial reduction in the number of one-axis twists needed to achieve a target estimation error.
arXiv Detail & Related papers (2022-12-23T16:45:15Z) - Ultrasensitive Measurement of Angular Rotations via Hermite-Gaussian
Pointer [21.94036763745746]
In this work, we employ the mn-order Hermite-Gaussian beam in the weak measurement scheme with an angular rotation interaction.
By taking a projective measurement on the final light beam, the precision of angular rotation is improved by a factor of 2mn+m+n.
arXiv Detail & Related papers (2022-12-13T01:41:05Z) - Probing cosmic string spacetime through parameter estimation [2.2945727928675734]
We estimate the deficit angle parameter by calculating its quantum Fisher information(QFI)
It is found that the quantum Fisher information depends on the deficit angle, evolution time, detector initial state, polarization direction, and its position.
Our results show that for different polarization cases the QFIs have different behaviors and different orders of magnitude, which may shed light on the exploration of cosmic string spacetime.
arXiv Detail & Related papers (2022-08-10T13:55:09Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Estimation of Convex Polytopes for Automatic Discovery of Charge State
Transitions in Quantum Dot Arrays [27.32875035022296]
We present the first practical algorithm for controlling the transition of electrons in a spin qubit array.
Our proposed algorithm uses active learning, to find the count, shapes and sizes of all facets of a given polytope.
Our results show that we can reliably find the facets of the polytope, including small facets with sizes on the order of the measurement precision.
arXiv Detail & Related papers (2021-08-20T12:07:10Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.