Gender Bias in Large Language Models across Multiple Languages
- URL: http://arxiv.org/abs/2403.00277v1
- Date: Fri, 1 Mar 2024 04:47:16 GMT
- Title: Gender Bias in Large Language Models across Multiple Languages
- Authors: Jinman Zhao, Yitian Ding, Chen Jia, Yining Wang, Zifan Qian
- Abstract summary: We examine gender bias in large language models (LLMs) generated for different languages.
We use three measurements: 1) gender bias in selecting descriptive words given the gender-related context.
2) gender bias in selecting gender-related pronouns (she/he) given the descriptive words.
- Score: 10.068466432117113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing deployment of large language models (LLMs) across various
applications, assessing the influence of gender biases embedded in LLMs becomes
crucial. The topic of gender bias within the realm of natural language
processing (NLP) has gained considerable focus, particularly in the context of
English. Nonetheless, the investigation of gender bias in languages other than
English is still relatively under-explored and insufficiently analyzed. In this
work, We examine gender bias in LLMs-generated outputs for different languages.
We use three measurements: 1) gender bias in selecting descriptive words given
the gender-related context. 2) gender bias in selecting gender-related pronouns
(she/he) given the descriptive words. 3) gender bias in the topics of
LLM-generated dialogues. We investigate the outputs of the GPT series of LLMs
in various languages using our three measurement methods. Our findings revealed
significant gender biases across all the languages we examined.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - What an Elegant Bridge: Multilingual LLMs are Biased Similarly in Different Languages [51.0349882045866]
This paper investigates biases of Large Language Models (LLMs) through the lens of grammatical gender.
We prompt a model to describe nouns with adjectives in various languages, focusing specifically on languages with grammatical gender.
We find that a simple classifier can not only predict noun gender above chance but also exhibit cross-language transferability.
arXiv Detail & Related papers (2024-07-12T22:10:16Z) - Leveraging Large Language Models to Measure Gender Representation Bias in Gendered Language Corpora [9.959039325564744]
Gender bias in text corpora can lead to perpetuation and amplification of societal inequalities.
Existing methods to measure gender representation bias in text corpora have mainly been proposed for English.
This paper introduces a novel methodology to quantitatively measure gender representation bias in Spanish corpora.
arXiv Detail & Related papers (2024-06-19T16:30:58Z) - What is Your Favorite Gender, MLM? Gender Bias Evaluation in Multilingual Masked Language Models [8.618945530676614]
This paper proposes an approach to estimate gender bias in multilingual lexicons from 5 languages: Chinese, English, German, Portuguese, and Spanish.
A novel model-based method is presented to generate sentence pairs for a more robust analysis of gender bias.
Our results suggest that gender bias should be studied on a large dataset using multiple evaluation metrics for best practice.
arXiv Detail & Related papers (2024-04-09T21:12:08Z) - Investigating Markers and Drivers of Gender Bias in Machine Translations [0.0]
Implicit gender bias in large language models (LLMs) is a well-documented problem.
We use the DeepL translation API to investigate the bias evinced when repeatedly translating a set of 56 Software Engineering tasks.
We find that some languages display similar patterns of pronoun use, falling into three loose groups.
We identify the main verb appearing in a sentence as a likely significant driver of implied gender in the translations.
arXiv Detail & Related papers (2024-03-18T15:54:46Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
Large Language Models (LLMs) can generate biased and toxic responses.
We propose a conditional text generation mechanism without the need for predefined gender phrases and stereotypes.
arXiv Detail & Related papers (2023-11-01T05:31:46Z) - Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation [12.376309678270275]
bridging the gap between languages for which parallel data is not available affects gender bias in multilingual NMT.
We study the effect of encouraging language-agnostic hidden representations on models' ability to preserve gender.
We find that language-agnostic representations mitigate zero-shot models' masculine bias, and with increased levels of gender inflection in the bridge language, pivoting surpasses zero-shot translation regarding fairer gender preservation for speaker-related gender agreement.
arXiv Detail & Related papers (2023-05-26T13:51:50Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
We focus on the representation of gender distinctions as a practical case study.
We examine the extent to which the gender concept is encoded in shared subspaces across different languages.
arXiv Detail & Related papers (2022-04-20T00:13:01Z) - A Survey on Gender Bias in Natural Language Processing [22.91475787277623]
We present a survey of 304 papers on gender bias in natural language processing.
We compare and contrast approaches to detecting and mitigating gender bias.
We find that research on gender bias suffers from four core limitations.
arXiv Detail & Related papers (2021-12-28T14:54:18Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
We study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications.
We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations.
arXiv Detail & Related papers (2020-05-02T04:34:37Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.