論文の概要: DEEP-IoT: Downlink-Enhanced Efficient-Power Internet of Things
- arxiv url: http://arxiv.org/abs/2403.00321v3
- Date: Fri, 15 Nov 2024 13:42:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 18:55:09.354968
- Title: DEEP-IoT: Downlink-Enhanced Efficient-Power Internet of Things
- Title(参考訳): DEEP-IoT: ダウンリンク強化された効率的なモノのインターネット
- Authors: Yulin Shao,
- Abstract要約: 本稿では,IoTデバイスの通信方法を再定義する,革新的な通信パラダイムであるDEEP-IoTを提案する。
先駆的なフィードバックチャネルコーディング戦略を通じて、DEEP-IoTは従来の送信機(IoTデバイス)中心の通信モデルに挑戦し、変革する。
従来のTurboとPolarのコードを52.71%まで上回る、IoTセルの運用寿命が大幅に向上したことを示す。
- 参考スコア(独自算出の注目度): 10.696740170777366
- License:
- Abstract: At the heart of the Internet of Things (IoT) -- a domain witnessing explosive growth -- the imperative for energy efficiency and the extension of device lifespans has never been more pressing. This paper presents DEEP-IoT, an innovative communication paradigm poised to redefine how IoT devices communicate. Through a pioneering feedback channel coding strategy, DEEP-IoT challenges and transforms the traditional transmitter (IoT devices)-centric communication model to one where the receiver (the access point) play a pivotal role, thereby cutting down energy use and boosting device longevity. We not only conceptualize DEEP-IoT but also actualize it by integrating deep learning-enhanced feedback channel codes within a narrow-band system. Simulation results show a significant enhancement in the operational lifespan of IoT cells -- surpassing traditional systems using Turbo and Polar codes by up to 52.71%. This leap signifies a paradigm shift in IoT communications, setting the stage for a future where IoT devices boast unprecedented efficiency and durability.
- Abstract(参考訳): 爆発的な成長を目撃する領域であるIoT(Internet of Things)の中心では、エネルギー効率とデバイス寿命の延長が重要視されている。
本稿では,IoTデバイスの通信方法を再定義する,革新的な通信パラダイムであるDEEP-IoTを提案する。
先駆的なフィードバックチャネルコーディング戦略を通じて、DEEP-IoTは従来の送信機(IoTデバイス)中心の通信モデルに挑戦し、レシーバ(アクセスポイント)が重要な役割を果たすものに変換することで、エネルギー使用の削減とデバイスの長寿命化を実現している。
私たちはDEEP-IoTを概念化するだけでなく、学習の強化したフィードバックチャネルコードを狭帯域システムに統合することで実現します。
シミュレーションの結果、IoTセルの運用寿命は、TurboとPolarのコードを使用した従来のシステムよりも52.71%も大きく向上している。
この飛躍は、IoT通信におけるパラダイムシフトを意味し、IoTデバイスが前例のない効率性と耐久性を誇示する未来へのステージを設定している。
関連論文リスト
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoTエコシステムは、モーション、サーマル、ジオロケーション、イメージング、ディープ、センサー、オーディオといった、現実世界のモダリティの豊富なソースを提供する。
機械学習は、IoTデータを大規模に自動的に処理する豊富な機会を提供する。
IoTエコシステムに適した,オープンソースの大規模マルチセンサ言語モデルであるIoT-LMを紹介します。
論文 参考訳(メタデータ) (2024-07-13T08:20:37Z) - Harnessing Federated Generative Learning for Green and Sustainable Internet of Things [9.699977999019977]
One-shot Federated Learning (OSFL)は、IoTエコシステム内の持続可能性と機械学習を調和させる革新的なパラダイムである。
OSFLは、複数の反復的なコミュニケーションラウンドをひとつの操作にまとめることで、従来のフェデレートラーニング(FL)ワークフローに革命をもたらす。
私たちの研究は、エネルギー効率のよいスマートシティや画期的なヘルスケアソリューションといった領域にまたがるIoTアプリケーションの景観を再構築する、OSFLの変革的な可能性を強調しています。
論文 参考訳(メタデータ) (2024-04-30T17:15:26Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Digital Twin-Native AI-Driven Service Architecture for Industrial
Networks [2.2924151077053407]
我々は、IoTネットワークの概念をサポートするDTネイティブなAI駆動サービスアーキテクチャを提案する。
提案するDTネイティブアーキテクチャでは,TCPベースのデータフローパイプラインと強化学習(RL)ベースの学習モデルを実装している。
論文 参考訳(メタデータ) (2023-11-24T14:56:13Z) - IoTFlowGenerator: Crafting Synthetic IoT Device Traffic Flows for Cyber
Deception [31.822346303953164]
ハニーポットは攻撃者の意図を理解し、攻撃者を騙して時間とリソースを消費する重要なセキュリティツールである。
より良いハニーポットを構築し、サイバー詐欺能力を高めるためには、IoTハニーポットは現実的なネットワークトラフィックフローを生成する必要がある。
本稿では,ユーザとIoTデバイスのインタラクションによって,実際のネットワークトラフィックを模倣するトラフィックフローを生成するための,新たなディープラーニングベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-01T16:24:07Z) - Technical Report-IoT Devices Proximity Authentication In Ad Hoc Network
Environment [0.0]
Internet of Things(IoT)は、物理的デバイスがデータを接続し交換することを可能にする分散通信技術システムである。
IoTデバイスへの認証は、攻撃者によるネガティブな影響を防ぐための第一歩であるため、不可欠である。
本稿では、IoTデバイス環境にあるものに基づいて、IoTデバイス認証方式を実装した。
論文 参考訳(メタデータ) (2022-10-01T03:07:42Z) - A Practical AoI Scheduler in IoT Networks with Relays [8.361681706210206]
従来の2ホップリレーIoTネットワーク用のAoIスケジューラに関する文献は限られている。
ディープ強化学習(DRL)アルゴリズムは、リレー付き2ホップIoTネットワークにおけるAoIスケジューリングのために研究されている。
本稿では,リレー付き2ホップIoTネットワークのための実用的なAoIスケジューラを提案する。
論文 参考訳(メタデータ) (2022-03-08T17:47:02Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
無人航空機(UAV)通信をサポートするIoTデバイスのための同時無線電力伝送と情報伝送方式を提案する。
第1フェーズでは、IoTデバイスが無線電力転送を通じてUAVからエネルギーを回収し、第2フェーズでは、UAVが情報伝送を通じてIoTデバイスからデータを収集する。
マルコフ決定過程を定式化し、ネットワーク総和率を最大化する最適化問題を解くために、2つの深い強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-05T23:55:44Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
巨大なモバイルエッジデバイス上でのフェデレーション学習(FL)は、多数のインテリジェントなモバイルアプリケーションのための新たな地平を開く。
FLは、定期的なグローバル同期と継続的なローカルトレーニングにより、参加するデバイスに膨大な通信と計算負荷を課す。
フレキシブルな通信圧縮を可能にする収束保証FLアルゴリズムを開発。
論文 参考訳(メタデータ) (2020-12-22T02:54:18Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。