論文の概要: Harnessing Federated Generative Learning for Green and Sustainable Internet of Things
- arxiv url: http://arxiv.org/abs/2407.05915v1
- Date: Tue, 30 Apr 2024 17:15:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 14:19:18.529048
- Title: Harnessing Federated Generative Learning for Green and Sustainable Internet of Things
- Title(参考訳): グリーンで持続可能なモノのインターネットのためのフェデレーション学習のハーネス
- Authors: Yuanhang Qi, M. Shamim Hossain,
- Abstract要約: One-shot Federated Learning (OSFL)は、IoTエコシステム内の持続可能性と機械学習を調和させる革新的なパラダイムである。
OSFLは、複数の反復的なコミュニケーションラウンドをひとつの操作にまとめることで、従来のフェデレートラーニング(FL)ワークフローに革命をもたらす。
私たちの研究は、エネルギー効率のよいスマートシティや画期的なヘルスケアソリューションといった領域にまたがるIoTアプリケーションの景観を再構築する、OSFLの変革的な可能性を強調しています。
- 参考スコア(独自算出の注目度): 9.699977999019977
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The rapid proliferation of devices in the Internet of Things (IoT) has ushered in a transformative era of data-driven connectivity across various domains. However, this exponential growth has raised pressing concerns about environmental sustainability and data privacy. In response to these challenges, this paper introduces One-shot Federated Learning (OSFL), an innovative paradigm that harmonizes sustainability and machine learning within IoT ecosystems. OSFL revolutionizes the traditional Federated Learning (FL) workflow by condensing multiple iterative communication rounds into a single operation, thus significantly reducing energy consumption, communication overhead, and latency. This breakthrough is coupled with the strategic integration of generative learning techniques, ensuring robust data privacy while promoting efficient knowledge sharing among IoT devices. By curtailing resource utilization, OSFL aligns seamlessly with the vision of green and sustainable IoT, effectively extending device lifespans and mitigating their environmental footprint. Our research underscores the transformative potential of OSFL, poised to reshape the landscape of IoT applications across domains such as energy-efficient smart cities and groundbreaking healthcare solutions. This contribution marks a pivotal step towards a more responsible, sustainable, and technologically advanced future.
- Abstract(参考訳): IoT(Internet of Things)におけるデバイスの急激な普及は、さまざまなドメインにわたるデータ駆動接続の変革の時代を後押ししている。
しかし、この急激な成長は、環境の持続可能性やデータのプライバシーに対する懸念を高めている。
これらの課題に対応するために、IoTエコシステム内の持続可能性と機械学習を調和させる革新的なパラダイムであるOne-shot Federated Learning (OSFL)を紹介する。
OSFLは、複数の反復的なコミュニケーションラウンドをひとつの操作にまとめることで、従来のフェデレートラーニング(FL)ワークフローに革命をもたらし、エネルギー消費、通信オーバーヘッド、レイテンシを大幅に削減する。
このブレークスルーは、生成学習技術の戦略的統合、堅牢なデータプライバシの確保、IoTデバイス間の効率的な知識共有の促進と組み合わせられている。
リソース使用量を削減することによって、OSFLは、緑と持続可能なIoTのビジョンとシームレスに一致し、デバイス寿命を効果的に拡張し、環境フットプリントを軽減します。
私たちの研究は、エネルギー効率のよいスマートシティや画期的なヘルスケアソリューションといった領域にまたがるIoTアプリケーションの景観を再構築する、OSFLの変革的な可能性を強調しています。
この貢献は、より責任があり、持続可能で、技術的に先進的な未来への重要な一歩である。
関連論文リスト
- Green Federated Learning: A new era of Green Aware AI [11.536626349203361]
フェデレートラーニング(FL)は、このニーズに対処する新たな機会を提供する。
グリーンアウェアなAIアルゴリズムの既存の取り組みとギャップをナビゲートし、理解するためのロードマップを、研究者、ステークホルダ、関心のある関係者に提供することが重要です。
この調査は主に、100を超えるFL作品を特定し分析することで、この目的を達成することを目的としている。
論文 参考訳(メタデータ) (2024-09-19T09:54:18Z) - Towards Sustainable IoT: Challenges, Solutions, and Future Directions for Device Longevity [0.0]
本研究は、IoTデバイスの早期解体に寄与する様々な難しさについて考察する。
セキュリティの脆弱性やユーザ認識のギャップ、ファッション駆動技術の動向の影響などの要因を調べることで、この論文は立法介入の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-05-26T04:05:01Z) - Powering the Future of IoT: Federated Learning for Optimized Power Consumption and Enhanced Privacy [0.0]
フェデレートラーニングは、IoT環境における消費電力とデータプライバシの固有の課題に対処するための、有望なパラダイムとして登場します。
本稿では、電力消費を軽減し、プライバシとセキュリティ対策を強化することにより、IoTデバイスの長寿命化におけるFLの変革の可能性について検討する。
論文 参考訳(メタデータ) (2024-05-05T22:18:22Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Over-The-Air Federated Learning: Status Quo, Open Challenges, and Future
Directions [78.5371215066019]
オーバー・ザ・エア・フェデレーション・ラーニング(OTA-FL)は、ネットワークエッジのユーザがスペクトルリソースを共有でき、効率的で低レイテンシなグローバルモデルアグリゲーションを実現する。
本稿では,OTA-FLの進展を概観し,今後の研究方向性について述べる。
論文 参考訳(メタデータ) (2023-07-03T12:44:52Z) - Multi-Tier Hierarchical Federated Learning-assisted NTN for Intelligent
IoT Services [24.10349383347469]
本研究では,分散型協調学習環境の育成におけるMT-HFLの役割について考察する。
これにより、IoTデバイスがコントリビューションだけでなく、ネットワーク管理において情報的な決定を行うことが可能になる。
このセットアップにより、効率的なデータ処理、高度なプライバシとセキュリティ対策、および変動するネットワーク条件への応答が保証される。
論文 参考訳(メタデータ) (2023-05-09T14:03:22Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
巨大なモバイルエッジデバイス上でのフェデレーション学習(FL)は、多数のインテリジェントなモバイルアプリケーションのための新たな地平を開く。
FLは、定期的なグローバル同期と継続的なローカルトレーニングにより、参加するデバイスに膨大な通信と計算負荷を課す。
フレキシブルな通信圧縮を可能にする収束保証FLアルゴリズムを開発。
論文 参考訳(メタデータ) (2020-12-22T02:54:18Z) - Green Internet of Things: The Next Generation Energy Efficient Internet
of Things [0.0]
IoT(Internet of Things)は、世界中の何十億もの相互接続デバイス間の接続を可能にすることを目的とした、新しい技術パラダイムである。
このIoTは、スマートヘルスケア、交通監視、スマートホーム、スマートシティ、およびさまざまな産業など、さまざまな領域で提供されている。
Green IoTは、IoTデバイスのエネルギー消費を削減し、環境を安全かつクリーンに保つことを推奨している。
論文 参考訳(メタデータ) (2020-12-02T16:52:18Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。