論文の概要: Advancing dermatological diagnosis: Development of a hyperspectral
dermatoscope for enhanced skin imaging
- arxiv url: http://arxiv.org/abs/2403.00612v1
- Date: Fri, 1 Mar 2024 15:35:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 16:55:47.820551
- Title: Advancing dermatological diagnosis: Development of a hyperspectral
dermatoscope for enhanced skin imaging
- Title(参考訳): 進行性皮膚科診断:高スペクトル皮膚内視鏡による皮膚画像診断の開発
- Authors: Martin J. Hetz, Carina Nogueira Garcia, Sarah Haggenm\"uller, Titus J.
Brinker
- Abstract要約: 本稿では,ヒト皮膚分析に適した近縁型ハイパースペクトル皮膚内視鏡(Hyperscope)の開発について紹介する。
15人と160人の皮膚画像から得られた予備的な結果は、様々な皮膚状態を特定し、特徴付けるためのハイパースコープの可能性を示している。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Clinical dermatology necessitates precision and innovation for efficient
diagnosis and treatment of various skin conditions. This paper introduces the
development of a cutting-edge hyperspectral dermatoscope (the Hyperscope)
tailored for human skin analysis. We detail the requirements to such a device
and the design considerations, from optical configurations to sensor selection,
necessary to capture a wide spectral range with high fidelity. Preliminary
results from 15 individuals and 160 recorded skin images demonstrate the
potential of the Hyperscope in identifying and characterizing various skin
conditions, offering a promising avenue for non-invasive skin evaluation and a
platform for future research in dermatology-related hyperspectral imaging.
- Abstract(参考訳): 皮膚科は、様々な皮膚疾患の効率的な診断と治療のための精度と革新を必要とする。
本稿では,ヒト皮膚分析に適した近縁型ハイパースペクトル皮膚内視鏡(Hyperscope)の開発について紹介する。
このようなデバイスに対する要求事項と、光学的構成からセンサ選択まで、高い忠実度で広いスペクトル範囲を捉えるために必要な設計上の考慮事項を詳述する。
15人の個人と160枚の皮膚画像から得られた予備結果は、様々な皮膚の状態の同定と特徴付けにおけるハイパースコープの可能性を示し、非侵襲的な皮膚評価に有望な道を提供し、皮膚科関連ハイパースペクトラルイメージングの将来の研究のためのプラットフォームを提供する。
関連論文リスト
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
拡散モデル (DM) は, 合成医用画像の生成において主要な手法となっているが, 臨界二倍偏差に悩まされている。
このようなバイアスを3段階のリサンプリング機構によって緩和する新しいDMフレームワークであるFairSkinを提案する。
本手法は, 画像の多様性と品質を著しく向上させ, 臨床環境における皮膚疾患の検出精度の向上に寄与する。
論文 参考訳(メタデータ) (2024-10-29T21:37:03Z) - A General-Purpose Multimodal Foundation Model for Dermatology [14.114262475562846]
PanDermは、皮膚疾患の200万以上の現実世界の画像のデータセット上で、自己教師付き学習を通じて事前訓練されたマルチモーダル皮膚科学の基礎モデルである。
PanDermは評価されたすべてのタスクで最先端のパフォーマンスを達成した。
PanDermは皮膚疾患の管理を強化し、他の医療分野におけるマルチモーダルファンデーションモデルの開発モデルとして機能する。
論文 参考訳(メタデータ) (2024-10-19T08:48:01Z) - Equitable Skin Disease Prediction Using Transfer Learning and Domain Adaptation [1.9505972437091028]
皮膚科学における既存の人工知能(AI)モデルは、様々な皮膚のトーンで病気を正確に診断する上で困難に直面している。
我々は、様々な画像領域からのリッチでトランスファー可能な知識を活かしたトランスファーラーニングアプローチを採用する。
あらゆる手法の中で、Med-ViTは様々な画像ソースから学んだ包括的な特徴表現のためにトップパフォーマーとして登場した。
論文 参考訳(メタデータ) (2024-09-01T23:48:26Z) - SkinGEN: an Explainable Dermatology Diagnosis-to-Generation Framework with Interactive Vision-Language Models [52.90397538472582]
SkinGENは、VLMが提供する診断結果から参照デモを生成する、診断から生成までのフレームワークである。
システム性能と説明可能性の両方を評価するために,32人の参加者によるユーザスタディを実施している。
その結果、SkinGENはVLM予測に対するユーザの理解を著しく改善し、診断プロセスへの信頼を高めることが示されている。
論文 参考訳(メタデータ) (2024-04-23T05:36:33Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
皮膚のトーンと色差効果の相互作用について検討し,色差が皮膚のトーン間のモデル性能バイアスの新たな原因となる可能性が示唆された。
我々の研究は皮膚疾患の検出を改善するために皮膚科のAIに補完的な角度を提供する。
論文 参考訳(メタデータ) (2024-01-24T07:45:24Z) - Skin Cancer Segmentation and Classification Using Vision Transformer for
Automatic Analysis in Dermatoscopy-based Non-invasive Digital System [0.0]
本研究では,Vision Transformerを用いた皮膚癌分類における画期的なアプローチを提案する。
Vision Transformerは、多様な画像解析タスクの成功で有名な最先端のディープラーニングアーキテクチャである。
Segment Anything Modelは、癌領域の正確なセグメンテーションを支援し、高いIOUとDice Coefficientを達成する。
論文 参考訳(メタデータ) (2024-01-09T11:22:54Z) - Revamping AI Models in Dermatology: Overcoming Critical Challenges for
Enhanced Skin Lesion Diagnosis [8.430482797862926]
我々は、分散-textbfClinical TriageモデルのオールインワンのtextbfHierarchical-textbfOutを示す。
臨床画像では,階層的予測,アウト・オブ・ディストリビューション画像の警告,皮膚内視鏡の推奨の3つの出力を生成する。
我々の汎用モデルは、病変診断のための貴重な意思決定支援を提供し、医療AI応用の有望な先例を定めている。
論文 参考訳(メタデータ) (2023-11-02T06:08:49Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
血管内超音波と光コヒーレンス断層撮影は冠状動脈を特徴付けるために広く利用可能である。
畳み込みニューラルネットワークモデルを提案し,その性能を多項損失関数を用いて最適化する。
モデルは2つの主要なアーティファクトのクラスをセグメンテーションし,血管壁領域内の解剖学的層を検出する。
論文 参考訳(メタデータ) (2021-05-11T15:52:31Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。