論文の概要: Advancing dermatological diagnosis: Development of a hyperspectral dermatoscope for enhanced skin imaging
- arxiv url: http://arxiv.org/abs/2403.00612v2
- Date: Tue, 25 Jun 2024 12:49:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 20:19:03.139618
- Title: Advancing dermatological diagnosis: Development of a hyperspectral dermatoscope for enhanced skin imaging
- Title(参考訳): 進行性皮膚科診断:高スペクトル皮膚内視鏡による皮膚画像診断の開発
- Authors: Martin J. Hetz, Carina Nogueira Garcia, Sarah Haggenmüller, Titus J. Brinker,
- Abstract要約: 本稿では,ヒト皮膚分析に適した近縁型ハイパースペクトル皮膚内視鏡(Hyperscope)の開発について紹介する。
15人と160人の皮膚画像から得られた予備的な結果は、様々な皮膚状態を特定し、特徴付けるためのハイパースコープの可能性を示している。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Clinical dermatology necessitates precision and innovation for efficient diagnosis and treatment of various skin conditions. This paper introduces the development of a cutting-edge hyperspectral dermatoscope (the Hyperscope) tailored for human skin analysis. We detail the requirements to such a device and the design considerations, from optical configurations to sensor selection, necessary to capture a wide spectral range with high fidelity. Preliminary results from 15 individuals and 160 recorded skin images demonstrate the potential of the Hyperscope in identifying and characterizing various skin conditions, offering a promising avenue for non-invasive skin evaluation and a platform for future research in dermatology-related hyperspectral imaging.
- Abstract(参考訳): 皮膚科は、様々な皮膚疾患の効率的な診断と治療のために、精度と革新を必要とする。
本稿では,ヒト皮膚分析に適した近縁型ハイパースペクトル皮膚内視鏡(Hyperscope)の開発について紹介する。
このようなデバイスに対する要求と、光学的構成からセンサー選択までの設計上の考慮事項について詳述し、高い忠実度で広いスペクトル範囲を捉えるために必要なものについて述べる。
15人の個人と160枚の皮膚画像から得られた予備的な結果は、様々な皮膚状態を特定し、特徴付けるためのハイパースコープの可能性を示し、非侵襲的な皮膚評価のための有望な道と、皮膚科関連ハイパースペクトルイメージングの今後の研究のためのプラットフォームを提供する。
関連論文リスト
- Enhancing Diagnosis through AI-driven Analysis of Reflectance Confocal Microscopy [36.639983997402275]
反射共焦点顕微鏡(英: Reflectance Confocal Microscopy、RCM)は、生体医学研究や臨床皮膚学で用いられる非侵襲的イメージング技術である。
RCMはレーザー光源を用いて組織を照明し、反射した光を捉え、様々な深さの顕微鏡構造の詳細画像を生成する。
近年の研究では、RCM画像の解析のためのAIと機械学習、特にCNNについて研究されている。
論文 参考訳(メタデータ) (2024-04-24T13:23:03Z) - SkinGEN: an Explainable Dermatology Diagnosis-to-Generation Framework with Interactive Vision-Language Models [52.90397538472582]
SkinGENは、VLMが提供する診断結果から参照デモを生成する、診断から生成までのフレームワークである。
システム性能と説明可能性の両方を評価するために,32人の参加者によるユーザスタディを実施している。
その結果、SkinGENはVLM予測に対するユーザの理解を著しく改善し、診断プロセスへの信頼を高めることが示されている。
論文 参考訳(メタデータ) (2024-04-23T05:36:33Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
皮膚のトーンと色差効果の相互作用について検討し,色差が皮膚のトーン間のモデル性能バイアスの新たな原因となる可能性が示唆された。
我々の研究は皮膚疾患の検出を改善するために皮膚科のAIに補完的な角度を提供する。
論文 参考訳(メタデータ) (2024-01-24T07:45:24Z) - Skin Cancer Segmentation and Classification Using Vision Transformer for
Automatic Analysis in Dermatoscopy-based Non-invasive Digital System [0.0]
本研究では,Vision Transformerを用いた皮膚癌分類における画期的なアプローチを提案する。
Vision Transformerは、多様な画像解析タスクの成功で有名な最先端のディープラーニングアーキテクチャである。
Segment Anything Modelは、癌領域の正確なセグメンテーションを支援し、高いIOUとDice Coefficientを達成する。
論文 参考訳(メタデータ) (2024-01-09T11:22:54Z) - Revamping AI Models in Dermatology: Overcoming Critical Challenges for
Enhanced Skin Lesion Diagnosis [8.430482797862926]
我々は、分散-textbfClinical TriageモデルのオールインワンのtextbfHierarchical-textbfOutを示す。
臨床画像では,階層的予測,アウト・オブ・ディストリビューション画像の警告,皮膚内視鏡の推奨の3つの出力を生成する。
我々の汎用モデルは、病変診断のための貴重な意思決定支援を提供し、医療AI応用の有望な先例を定めている。
論文 参考訳(メタデータ) (2023-11-02T06:08:49Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Salient Skin Lesion Segmentation via Dilated Scale-Wise Feature Fusion
Network [28.709314434820953]
現在の皮膚病変のセグメンテーションアプローチは、困難な状況下ではパフォーマンスが悪くなっている。
畳み込み分解に基づく拡張スケールワイド機能融合ネットワークを提案する。
提案手法は, 常に最先端の結果を示す。
論文 参考訳(メタデータ) (2022-05-20T16:08:37Z) - Automatic Facial Skin Feature Detection for Everyone [60.31670960526022]
本研究では,野生の自撮り自撮りのために,さまざまな肌のトーンと年齢群にまたがって機能する顔顔の特徴自動検出法を提案する。
具体的には,肌の色,重度度,照明条件の異なる自撮り画像に対して,アクネ,顔料,ニキビの位置を注釈する。
論文 参考訳(メタデータ) (2022-03-30T04:52:54Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
血管内超音波と光コヒーレンス断層撮影は冠状動脈を特徴付けるために広く利用可能である。
畳み込みニューラルネットワークモデルを提案し,その性能を多項損失関数を用いて最適化する。
モデルは2つの主要なアーティファクトのクラスをセグメンテーションし,血管壁領域内の解剖学的層を検出する。
論文 参考訳(メタデータ) (2021-05-11T15:52:31Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。