Informed and Assessable Observability Design Decisions in Cloud-native Microservice Applications
- URL: http://arxiv.org/abs/2403.00633v2
- Date: Fri, 12 Jul 2024 18:50:12 GMT
- Title: Informed and Assessable Observability Design Decisions in Cloud-native Microservice Applications
- Authors: Maria C. Borges, Joshua Bauer, Sebastian Werner, Michael Gebauer, Stefan Tai,
- Abstract summary: observability is important to ensure reliability of microservice applications.
Architects need to understand observability-related trade-offs in order to weigh between different observability design alternatives.
We argue for a systematic method to arrive at informed and continuously assessable observability design decisions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Observability is important to ensure the reliability of microservice applications. These applications are often prone to failures, since they have many independent services deployed on heterogeneous environments. When employed "correctly", observability can help developers identify and troubleshoot faults quickly. However, instrumenting and configuring the observability of a microservice application is not trivial but tool-dependent and tied to costs. Architects need to understand observability-related trade-offs in order to weigh between different observability design alternatives. Still, these architectural design decisions are not supported by systematic methods and typically just rely on "professional intuition". In this paper, we argue for a systematic method to arrive at informed and continuously assessable observability design decisions. Specifically, we focus on fault observability of cloud-native microservice applications, and turn this into a testable and quantifiable property. Towards our goal, we first model the scale and scope of observability design decisions across the cloud-native stack. Then, we propose observability metrics which can be determined for any microservice application through so-called observability experiments. We present a proof-of-concept implementation of our experiment tool OXN. OXN is able to inject arbitrary faults into an application, similar to Chaos Engineering, but also possesses the unique capability to modify the observability configuration, allowing for the assessment of design decisions that were previously left unexplored. We demonstrate our approach using a popular open source microservice application and show the trade-offs involved in different observability design decisions.
Related papers
- Continuous Observability Assurance in Cloud-Native Applications [0.0]
We build on previous work and integrate our observability experiment tool OXN into a novel method for continuous observability assurance.
We demonstrate its use and discuss future directions.
arXiv Detail & Related papers (2025-03-11T15:43:26Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.
MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.
Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - Semantic Dependency in Microservice Architecture: A Framework for Definition and Detection [0.0]
This paper introduces the Semantic Dependency Matrix as an instrument to address these challenges.
It shows that these hidden dependencies can exist independently of endpoint data dependencies, revealing critical connections that might otherwise be overlooked.
arXiv Detail & Related papers (2025-01-20T23:34:24Z) - Microservice Deployment in Space Computing Power Networks via Robust Reinforcement Learning [43.96374556275842]
It is important to provide reliable real-time remote sensing inference services to meet the low-latency requirements.
This paper presents a remote sensing artificial intelligence applications deployment framework designed for Low Earth Orbit satellite constellations.
arXiv Detail & Related papers (2025-01-08T16:55:04Z) - Watson: A Cognitive Observability Framework for the Reasoning of Foundation Model-Powered Agents [7.392058124132526]
Foundations models (FMs) play an increasingly prominent role in complex software systems, such as FM-powered agentic software (i.e., Agentware)
Unlike traditional software, agents operate autonomously, using opaque data and implicit reasoning, making it difficult to observe and understand their behavior during runtime.
We propose cognitive observability as a new type of required observability that has emerged for such innovative systems.
arXiv Detail & Related papers (2024-11-05T19:13:22Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - OXN -- Automated Observability Assessments for Cloud-Native Applications [0.0]
We present a proof-of-concept implementation of an experiment tool - Observability eXperiment eNgine (OXN)
OXN is able to inject arbitrary faults into an application, similar to Chaos Engineering, but also possesses the unique capability to modify the observability configuration.
arXiv Detail & Related papers (2024-07-12T19:04:13Z) - Robots That Ask For Help: Uncertainty Alignment for Large Language Model
Planners [85.03486419424647]
KnowNo is a framework for measuring and aligning the uncertainty of large language models.
KnowNo builds on the theory of conformal prediction to provide statistical guarantees on task completion.
arXiv Detail & Related papers (2023-07-04T21:25:12Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - CoreDiag: Eliminating Redundancy in Constraint Sets [68.8204255655161]
We present a new algorithm which can be exploited for the determination of minimal cores (minimal non-redundant constraint sets)
The algorithm is especially useful for distributed knowledge engineering scenarios where the degree of redundancy can become high.
In order to show the applicability of our approach, we present an empirical study conducted with commercial configuration knowledge bases.
arXiv Detail & Related papers (2021-02-24T09:16:10Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z) - Modeling Perception Errors towards Robust Decision Making in Autonomous
Vehicles [11.503090828741191]
We propose a simulation-based methodology towards answering the question: is a perception subsystem sufficient for the decision making subsystem to make robust, safe decisions?
We show how to analyze the impact of different kinds of sensing and perception errors on the behavior of the autonomous system.
arXiv Detail & Related papers (2020-01-31T08:02:14Z) - Dirichlet uncertainty wrappers for actionable algorithm accuracy
accountability and auditability [0.5156484100374058]
We propose a wrapper that enriches its output prediction with a measure of uncertainty.
Based on the resulting uncertainty measure, we advocate for a rejection system that selects the more confident predictions.
Results demonstrate the effectiveness of the uncertainty computed by the wrapper.
arXiv Detail & Related papers (2019-12-29T11:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.