論文の概要: Direct Alignment of Draft Model for Speculative Decoding with
Chat-Fine-Tuned LLMs
- arxiv url: http://arxiv.org/abs/2403.00858v3
- Date: Fri, 8 Mar 2024 23:23:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 17:19:46.988889
- Title: Direct Alignment of Draft Model for Speculative Decoding with
Chat-Fine-Tuned LLMs
- Title(参考訳): Chat-Fine-Tuned LLMを用いた投機復号のためのドラフトモデルの直接アライメント
- Authors: Raghavv Goel, Mukul Gagrani, Wonseok Jeon, Junyoung Park, Mingu Lee,
Christopher Lott
- Abstract要約: 投機的復号化による推論アクセラレーションを実現するためには、高品質なドラフトモデルをトレーニングする必要がある。
我々は、Llama 2 Chat Drafter 115M、Llama 2 Chat 7B以上のドラフトモデル、オリジナルサイズの1.64%しか持たないLlama 2 Chat Drafter 115Mを訓練する。
Llama 2 Chat Dr After 115M with speculative decoding は最大2.3ブロック効率と2.4$times$ speed-upを実現している。
- 参考スコア(独自算出の注目度): 11.91629418177851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text generation with Large Language Models (LLMs) is known to be memory bound
due to the combination of their auto-regressive nature, huge parameter counts,
and limited memory bandwidths, often resulting in low token rates. Speculative
decoding has been proposed as a solution for LLM inference acceleration.
However, since draft models are often unavailable in the modern open-source LLM
families, e.g., for Llama 2 7B, training a high-quality draft model is required
to enable inference acceleration via speculative decoding. In this paper, we
propose a simple draft model training framework for direct alignment to
chat-capable target models. With the proposed framework, we train Llama 2 Chat
Drafter 115M, a draft model for Llama 2 Chat 7B or larger, with only 1.64\% of
the original size. Our training framework only consists of pretraining,
distillation dataset generation, and finetuning with knowledge distillation,
with no additional alignment procedure. For the finetuning step, we use
instruction-response pairs generated by target model for distillation in
plausible data distribution, and propose a new Total Variation Distance++
(TVD++) loss that incorporates variance reduction techniques inspired from the
policy gradient method in reinforcement learning. Our empirical results show
that Llama 2 Chat Drafter 115M with speculative decoding achieves up to 2.3
block efficiency and 2.4$\times$ speed-up relative to autoregressive decoding
on various tasks with no further task-specific fine-tuning.
- Abstract(参考訳): 大規模言語モデル(llms)を用いたテキスト生成は、その自己回帰性、巨大なパラメータ数、メモリ帯域幅の制限の組み合わせによってメモリバインドであることが知られており、トークンレートが低くなることが多い。
LLM推論加速の解法として投機的復号法が提案されている。
しかし、Llama 2 7Bのような現代のオープンソースのLLMファミリでは、ドラフトモデルは利用できないことが多いため、投機的復号化による推論アクセラレーションを可能にするために、高品質のドラフトモデルを訓練する必要がある。
本稿では,チャット可能なターゲットモデルに直接アライメントするための簡易なモデルトレーニングフレームワークを提案する。
提案したフレームワークでは、Llama 2 Chat 7B以上のドラフトモデルであるLlama 2 Chat Drafter 115Mを、オリジナルサイズのわずか1.64\%でトレーニングする。
トレーニングフレームワークは,事前学習,蒸留データセット生成,知識蒸留による微調整のみで,追加のアライメント処理は行わない。
微調整のステップでは,ターゲットモデルが生成した命令応答対を用いて可算データ分布の蒸留を行い,強化学習におけるポリシー勾配法に触発された分散低減手法を組み込んだ新しい全変動距離++(tvd++)損失を提案する。
実験結果から,llama 2 chat drafter 115mの投機的復号化は,最大2.3ブロック効率と2.4$\times$の高速化を実現する。
関連論文リスト
- SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
投機的復号法(SD)は,大規模言語モデル(LLM)の推論を高速化するパラダイムとして広く用いられている。
本稿では,LLMの中間層を適応的に選択して推論時にスキップする,オンザフライの自己投機的復号アルゴリズムであるSWIFTを紹介する。
SWIFTは生成したテキストの元の分布を保ちながら1.3x-1.6xの高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-09T14:15:30Z) - SpaLLM: Unified Compressive Adaptation of Large Language Models with Sketching [32.4599581528901]
Two-towerアーキテクチャは、事前学習したLLMパラメータをコンパクトな表現に圧縮し、付加的な完全精度アダプタを微調整するために用いられる。
Sketched Adapting of LLMs (Sketched Adapting of LLMs) を提案する。
SpaLLMは事前訓練したLLM重量をルックアップテーブルにスケッチし、これらのテーブルの値を直接微調整する。
論文 参考訳(メタデータ) (2024-10-08T20:58:24Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Boosting Lossless Speculative Decoding via Feature Sampling and Partial Alignment Distillation [8.046705062670096]
損失のない投機的復号化は、ターゲットとする大言語モデル推論を加速する。
FSPAD (Feature Sampling and partial Alignment Distillation for Lossless Speculative Decoding) を提案する。
我々の実験は、ヴィクナ級数とLLaMA3-インストラクト級数で最大かつ最小のモデルにおいて、欲求と非欲求デコーディングの両方を含む。
論文 参考訳(メタデータ) (2024-08-28T06:28:01Z) - Graph-Structured Speculative Decoding [52.94367724136063]
投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
論文 参考訳(メタデータ) (2024-07-23T06:21:24Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
多様なアプリケーションへの微調整された大規模言語モデル(LLM)は、複雑な要求を満たすために不可欠である。
近年の研究では、微調整LDMをベースモデルと対応するデルタウェイトに分解し、低ランクまたは低ビットのアプローチで圧縮してコストを削減することが示唆されている。
本研究では,従来の低ランク圧縮法と低ビット圧縮法がタスク固有の微調整LDMのモデル性能を著しく損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-13T07:57:27Z) - GliDe with a CaPE: A Low-Hassle Method to Accelerate Speculative
Decoding [81.01996600734616]
GliDe と CaPE を導入し,バニラ投機復号への2つの低ハードル修正を行った。
GliDeは、ターゲットのLLMからキャッシュされたキーと値を再利用する、修正されたドラフトモデルアーキテクチャである。
コード、データ、トレーニング済みのドラフトモデルをリリースします。
論文 参考訳(メタデータ) (2024-02-03T08:44:11Z) - DistillSpec: Improving Speculative Decoding via Knowledge Distillation [70.61777015900272]
投機的復号(SD)は、複数のトークンを生成するためにより高速なドラフトモデルを使用することで、大きな言語モデル推論を加速する。
本稿では,SDを適用する前に,知識蒸留を用いて,ドラフトモデルとターゲットモデルとの整合性を向上するDistillSpecを提案する。
DistillSpecは標準SDよりも10~45%のスピードアップを実現しています。
論文 参考訳(メタデータ) (2023-10-12T16:21:04Z) - Online Speculative Decoding [34.987825705622555]
大規模言語モデルの推論を高速化するオンライン投機的復号法を導入する。
主なアイデアは、観測されたユーザクエリデータに対する(複数)ドラフトモデルを継続的に更新することである。
本稿では,知識蒸留に基づくオンライン投機的デコーディングのプロトタイプを開発し,合成データと実データの両方を用いて評価する。
論文 参考訳(メタデータ) (2023-10-11T04:03:42Z) - Speculative Decoding with Big Little Decoder [108.95187338417541]
Big Little Decoder (BiLD) は、幅広いテキスト生成アプリケーションの推論効率と遅延を改善するフレームワークである。
NVIDIA T4 GPUでは、当社のフレームワークは最大2.12倍の高速化を実現し、生成品質の最小化を実現している。
私たちのフレームワークは完全にプラグアンドプレイで、トレーニングプロセスやモデルアーキテクチャの変更なしに適用できます。
論文 参考訳(メタデータ) (2023-02-15T18:55:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。