論文の概要: SpaLLM: Unified Compressive Adaptation of Large Language Models with Sketching
- arxiv url: http://arxiv.org/abs/2410.06364v1
- Date: Tue, 8 Oct 2024 20:58:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 06:09:19.675872
- Title: SpaLLM: Unified Compressive Adaptation of Large Language Models with Sketching
- Title(参考訳): SpaLLM: スケッチによる大規模言語モデルの統一圧縮適応
- Authors: Tianyi Zhang, Junda Su, Oscar Wu, Zhaozhuo Xu, Anshumali Shrivastava,
- Abstract要約: Two-towerアーキテクチャは、事前学習したLLMパラメータをコンパクトな表現に圧縮し、付加的な完全精度アダプタを微調整するために用いられる。
Sketched Adapting of LLMs (Sketched Adapting of LLMs) を提案する。
SpaLLMは事前訓練したLLM重量をルックアップテーブルにスケッチし、これらのテーブルの値を直接微調整する。
- 参考スコア(独自算出の注目度): 32.4599581528901
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compressive adaptation approaches, such as QLoRA, are widely popular alternatives for reducing memory requirements during fine-tuning of large language models (LLMs) while producing models capable of handling various downstream tasks. The key idea is to employ a "two-tower" architecture: compressing pre-trained LLM parameters into compact representations and fine-tuning the additive full-precision adapter, which typically has few tunable parameters in low-rank format. However, the strict algebraic assumptions, such as low-rank assumption, and the complexity of composing two-tower architectures are some of the known shortcomings, resulting in a poor accuracy-efficiency trade-off. In response to these known limitations, we propose SpaLLM (Sketched Parameter Adaptation of LLMs), a novel compressive adaptation approach for LLMs. This method is also the first to illustrate parameter-sharing compression methods for LLM fine-tuning, which, unlike QLoRA, are free from strict low-rank algebraic assumptions on adapters. Furthermore, our proposal unifies model compression and adaptation into a single, streamlined process, eliminating the need for two-tower architectures. SpaLLM sketches pre-trained LLM weights into lookup tables and directly fine-tunes the values in these tables. This approach simplifies LLMs' compressive adaptation workflow, potentially improves multi-user serving efficiency, and delivers significantly better accuracy for both natural language understanding and generation tasks. Moreover, by avoiding the "two-tower" architecture, our framework only requires one compressed matrix multiplication per layer during inference, demonstrating superior inference efficiency compared to previous methods.
- Abstract(参考訳): QLoRAのような圧縮適応アプローチは、大規模言語モデル(LLM)の微調整中にメモリ要求を減らし、様々な下流タスクを処理できるモデルを生成するための一般的な代替手段である。
キーとなる考え方は、事前訓練されたLLMパラメータをコンパクトな表現に圧縮し、通常ローランクフォーマットで調整可能なパラメータがほとんどない追加の完全精度アダプタを微調整することである。
しかし、低ランクな仮定のような厳密な代数的仮定や、2towerアーキテクチャを構成する複雑さは既知の欠点のいくつかであり、結果として精度と効率のトレードオフは不十分である。
これらの制約に応えて, LLM に対する新しい圧縮適応手法である SpaLLM (Sketched Parameter Adaptation of LLMs) を提案する。
この手法は、QLoRAとは異なり、アダプタ上の厳密な低ランク代数的仮定を含まないLLMファインチューニングのためのパラメータ共有圧縮法を初めて記述したものである。
さらに,本提案では,モデル圧縮と適応を単一の合理化プロセスに統合し,2towerアーキテクチャの必要性を解消する。
SpaLLMはトレーニング済みのLLM重量をルックアップテーブルにスケッチし、これらのテーブルの値を直接微調整する。
このアプローチは、LLMの圧縮適応ワークフローを単純化し、マルチユーザサービス効率を向上し、自然言語理解と生成タスクの両方において、大幅に精度が向上する。
さらに,"2-tower"アーキテクチャを避けることで,従来の手法よりも優れた推論効率を示すため,提案手法では1層あたりの圧縮行列乗算しか必要としない。
関連論文リスト
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - SLiM: One-shot Quantized Sparse Plus Low-rank Approximation of LLMs [2.7624021966289605]
大規模言語モデル(LLM)は、自然言語の理解と生成タスクに革命をもたらした。
LLMは、大きなパラメータサイズのため、メモリ消費が高く、推論時間が遅い。
本稿では,1ショットの量子スパースプラス低ランク近似を用いたLEMの圧縮手法であるSLiMを紹介する。
論文 参考訳(メタデータ) (2024-10-12T18:36:07Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
多様なアプリケーションへの微調整された大規模言語モデル(LLM)は、複雑な要求を満たすために不可欠である。
近年の研究では、微調整LDMをベースモデルと対応するデルタウェイトに分解し、低ランクまたは低ビットのアプローチで圧縮してコストを削減することが示唆されている。
本研究では,従来の低ランク圧縮法と低ビット圧縮法がタスク固有の微調整LDMのモデル性能を著しく損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-13T07:57:27Z) - CLAQ: Pushing the Limits of Low-Bit Post-Training Quantization for LLMs [44.03692512352445]
カラムレベル適応量量子化(CLAQ)は、LLM(Large Language Models)量子化のための新しく効果的なフレームワークである。
本稿では,LLM量子化のための3種類の適応戦略を導入することで,新しい効果的なCLAQフレームワークを提案する。
LLaMA-1, LLaMA-2, Yi など,様々な主要なオープンソース LLM に関する実験により, 提案手法が様々なビット設定における最先端結果を達成することを示す。
論文 参考訳(メタデータ) (2024-05-27T14:49:39Z) - Feature-based Low-Rank Compression of Large Language Models via Bayesian Optimization [40.15915011575071]
低ランク圧縮は、大規模言語モデルにおける非必須パラメータを減らすための有望な手法である。
大型モデルの低ランク特性に関する実証的研究を行う。
大規模言語モデルに適した低ランク圧縮手法を提案する。
論文 参考訳(メタデータ) (2024-05-17T08:27:12Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
我々のアルゴリズムは、AQLMと呼ばれ、情報検索のための古典的な加算量子化(AQ)アプローチを一般化する。
トークン生成のためのAQLMの高速GPUおよびCPU実装を提供しており、最適化されたFP16実装を高速にマッチングまたは性能良くすることができる。
論文 参考訳(メタデータ) (2024-01-11T18:54:44Z) - Memory-Efficient Fine-Tuning of Compressed Large Language Models via
sub-4-bit Integer Quantization [27.79783067245817]
大規模言語モデル(LLM)は、高いメモリ要求と計算コストのため、微調整とデプロイメントの課題に直面している。
本稿では,PEFT と量子化 LLM の利点を組み合わせた簡易かつ効果的な手法である PEQA (Efficient Adaptation and Quantization-aware) を提案する。
論文 参考訳(メタデータ) (2023-05-23T15:20:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。