CIDGMed: Causal Inference-Driven Medication Recommendation with Enhanced Dual-Granularity Learning
- URL: http://arxiv.org/abs/2403.00880v2
- Date: Wed, 30 Oct 2024 05:18:03 GMT
- Title: CIDGMed: Causal Inference-Driven Medication Recommendation with Enhanced Dual-Granularity Learning
- Authors: Shunpan Liang, Xiang Li, Shi Mu, Chen Li, Yu Lei, Yulei Hou, Tengfei Ma,
- Abstract summary: Medication recommendation aims to integrate patients' long-term health records to provide accurate and safe medication combinations.
Existing methods often fail to deeply explore the true causal relationships between diseases/procedures and medications.
We propose the Causal Inference-driven Dual-Granularity Medication Recommendation method (CIDGMed)
- Score: 10.60553153370577
- License:
- Abstract: Medication recommendation aims to integrate patients' long-term health records to provide accurate and safe medication combinations for specific health states. Existing methods often fail to deeply explore the true causal relationships between diseases/procedures and medications, resulting in biased recommendations. Additionally, in medication representation learning, the relationships between information at different granularities of medications, coarse-grained (medication itself) and fine-grained (molecular level), are not effectively integrated, leading to biases in representation learning. To address these limitations, we propose the Causal Inference-driven Dual-Granularity Medication Recommendation method (CIDGMed). Our approach leverages causal inference to uncover the relationships between diseases/procedures and medications, thereby enhancing the rationality and interpretability of recommendations. By integrating coarse-grained medication effects with fine-grained molecular structure information, CIDGMed provides a comprehensive representation of medications. Additionally, we employ a bias correction model during the prediction phase to further refine recommendations, ensuring both accuracy and safety. Through extensive experiments, CIDGMed significantly outperforms current state-of-the-art models across multiple metrics, achieving a 2.54% increase in accuracy, a 3.65% reduction in side effects, and a 39.42% improvement in time efficiency. Additionally, we demonstrate the rationale of CIDGMed through a case study.
Related papers
- drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network [9.637695046701493]
drGAT is a graph deep learning model that can predict sensitivity to drugs.
drGAT has superior performance over existing models, achieving 78% accuracy and 76% F1 score for 269 DNA-damaging compounds.
Our method can be used to accurately predict sensitivity to drugs and may be useful in the identification of biomarkers relating to the treatment of cancer patients.
arXiv Detail & Related papers (2024-05-14T22:16:52Z) - Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients [47.68396964741116]
We propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed) to enhance accuracy for rare diseases.
It employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes.
It provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
arXiv Detail & Related papers (2024-03-26T14:36:22Z) - StratMed: Relevance Stratification between Biomedical Entities for
Sparsity on Medication Recommendation [9.296433860766165]
StratMed is a stratification strategy that overcomes the long-tailed problem and achieves fuller learning of sparse data.
It also utilizes a dual-property network to address the issue of mutual constraints on the safety and accuracy of medication combinations.
Our model reduces safety risk by 15.08%, improves accuracy by 0.36%, and reduces training time consumption by 81.66%.
arXiv Detail & Related papers (2023-08-31T14:59:32Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
We develop a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs.
EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base.
Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.
arXiv Detail & Related papers (2022-10-11T16:07:52Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
We propose a DDI-controllable drug recommendation model named SafeDrug to leverage drugs' molecule structures and model DDIs explicitly.
On a benchmark dataset, our SafeDrug is relatively shown to reduce DDI by 19.43% and improves 2.88% on Jaccard similarity between recommended and actually prescribed drug combinations over previous approaches.
arXiv Detail & Related papers (2021-05-05T00:20:48Z) - A standardized framework for risk-based assessment of treatment effect
heterogeneity in observational healthcare databases [60.07352590494571]
The aim of this study was to extend this approach to the observational setting using a standardized scalable framework.
We demonstrate our framework by evaluating the effect of angiotensin-converting enzyme (ACE) inhibitors versus beta blockers on three efficacy and six safety outcomes.
arXiv Detail & Related papers (2020-10-13T14:48:31Z) - Reinforcement learning and Bayesian data assimilation for model-informed
precision dosing in oncology [0.0]
Current strategies comprise model-informed dosing tables or are based on maximum a-posteriori estimates.
We propose three novel approaches for MIPD employing Bayesian data assimilation and/or reinforcement learning to control neutropenia.
These approaches have the potential to substantially reduce the incidence of life-threatening grade 4 and subtherapeutic grade 0 neutropenia.
arXiv Detail & Related papers (2020-06-01T16:38:27Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
We propose a new knowledge graph embedding framework for drug-drug interactions.
In our framework, the autoencoder is employed to generate high-quality negative samples.
The discriminator learns the embeddings of drugs and interactions based on both positive and negative triplets.
arXiv Detail & Related papers (2020-04-15T21:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.