論文の概要: Pairwise Alignment Improves Graph Domain Adaptation
- arxiv url: http://arxiv.org/abs/2403.01092v2
- Date: Wed, 5 Jun 2024 00:20:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 00:51:07.606728
- Title: Pairwise Alignment Improves Graph Domain Adaptation
- Title(参考訳): Pairwise Alignmentがグラフドメイン適応を改善した
- Authors: Shikun Liu, Deyu Zou, Han Zhao, Pan Li,
- Abstract要約: この研究は、グラフデータ上の分散シフトのユニークな複雑さに対処するために、グラフドメイン適応(GDA)に注力する。
本稿では,グラフ構造変化に対応する新しい理論的手法であるペアワイズアライメント(ペアワイズアライメント)を提案する。
提案手法は,ソーシャルネットワークの領域シフトを伴うノード分類を含む実世界のアプリケーションにおいて,優れた性能を示す。
- 参考スコア(独自算出の注目度): 16.626928606474173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based methods, pivotal for label inference over interconnected objects in many real-world applications, often encounter generalization challenges, if the graph used for model training differs significantly from the graph used for testing. This work delves into Graph Domain Adaptation (GDA) to address the unique complexities of distribution shifts over graph data, where interconnected data points experience shifts in features, labels, and in particular, connecting patterns. We propose a novel, theoretically principled method, Pairwise Alignment (Pair-Align) to counter graph structure shift by mitigating conditional structure shift (CSS) and label shift (LS). Pair-Align uses edge weights to recalibrate the influence among neighboring nodes to handle CSS and adjusts the classification loss with label weights to handle LS. Our method demonstrates superior performance in real-world applications, including node classification with region shift in social networks, and the pileup mitigation task in particle colliding experiments. For the first application, we also curate the largest dataset by far for GDA studies. Our method shows strong performance in synthetic and other existing benchmark datasets.
- Abstract(参考訳): グラフベースの手法は、多くの実世界のアプリケーションにおいて相互接続されたオブジェクトに対するラベル推論のために重要であり、モデルトレーニングに使用されるグラフがテストに使用されるグラフと大きく異なる場合、しばしば一般化問題に遭遇する。
この作業は、グラフデータ上の分散シフトのユニークな複雑さに対処するため、グラフドメイン適応(GDA)に組み込まれ、相互接続されたデータポイントは、機能やラベル、特に接続パターンのシフトを経験する。
本稿では,条件構造シフト (CSS) とラベルシフト (LS) を緩和することにより,グラフ構造シフトに対処する新しい理論的手法であるペアワイズアライメント (ペアワイズアライメント) を提案する。
Pair-Alignはエッジウェイトを使用して、近隣ノード間の影響を再検討し、CSSを処理する。
提案手法は,ネットワークの領域シフトを考慮したノード分類や,粒子衝突実験におけるピーク緩和タスクなど,実世界のアプリケーションにおいて優れた性能を示す。
最初のアプリケーションでは、GDA研究のために、これまでで最大のデータセットをキュレートします。
提案手法は,既存のベンチマークデータセットにおいて高い性能を示す。
関連論文リスト
- Revisiting, Benchmarking and Understanding Unsupervised Graph Domain Adaptation [31.106636947179005]
教師なしグラフドメイン適応(Unsupervised Graph Domain Adaptation)は、ラベル豊富なソースグラフからラベルなしターゲットグラフへの知識の転送を含む。
GDABenchと呼ばれる教師なしグラフ領域適応のための最初の包括的なベンチマークを示す。
我々は、現在のUGDAモデルの性能がデータセットや適応シナリオによって大きく異なることを観察する。
論文 参考訳(メタデータ) (2024-07-09T06:44:09Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - ALEX: Towards Effective Graph Transfer Learning with Noisy Labels [11.115297917940829]
本稿では,グラフ伝達学習の課題に対処するため,バランスアライメントと情報認識試験(ALEX)と呼ばれる新しい手法を提案する。
ALEXはまず特異値分解を使用して、重要な構造的意味論を持つ異なるビューを生成し、堅牢なノード表現を提供する。
この基礎の上に構築され、複雑なマルチモーダル分布の暗黙的な領域アライメントのために、対向領域判別器が組み込まれている。
論文 参考訳(メタデータ) (2023-09-26T04:59:49Z) - Structural Re-weighting Improves Graph Domain Adaptation [13.019371337183202]
本研究は,グラフ構造やノード属性による分散シフトの影響について検討する。
構造再重み付け(StruRW)と呼ばれる新しい手法がこの問題に対処するために提案され、合成グラフ、ベンチマークデータセット4つ、高エネルギー物理学における新しい応用についてテストされている。
論文 参考訳(メタデータ) (2023-06-05T20:11:30Z) - Robust Attributed Graph Alignment via Joint Structure Learning and
Optimal Transport [26.58964162799207]
本稿では,構造化学習と最適輸送アライメントを併用した教師なしグラフアライメントフレームワークSLOTAlignを提案する。
マルチビュー構造学習を取り入れて、グラフ表現能力を高め、グラフ間で継承された構造と特徴の不整合の影響を低減する。
提案したSLOTAlignは、7つの教師なしグラフアライメント法と5つの特殊なKGアライメント法よりも優れた性能と強いロバスト性を示す。
論文 参考訳(メタデータ) (2023-01-30T08:41:36Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
トレーニングセット内の既存グラフから直接正のグラフインスタンスを選択することを提案する。
私たちの選択は、特定のドメイン固有のペアワイズ類似度測定に基づいています。
さらに,ノードを動的にマスキングしてグラフ上に均等に分配する適応ノードレベルの事前学習手法を開発した。
論文 参考訳(メタデータ) (2022-06-23T20:12:51Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGMは、グラフニューラルネットワーク(GNN)ベースのグラフマッチングのパフォーマンスをトレーニングなしで向上するフレームワークである。
TFGMをさまざまなGNNに適用することは、ベースラインよりも有望な改善を示している。
論文 参考訳(メタデータ) (2022-01-14T09:04:46Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
グラフ識別(GI)は、グラフ学習において長い間研究されており、特定の応用において不可欠である。
本稿では,逆グラフ識別(Inverse Graph Identification, IGI)と呼ばれる新しい問題を定義する。
本稿では,グラフアテンションネットワーク(GAT)を用いたノードレベルのメッセージパッシング処理を,GIのプロトコルの下でシンプルかつ効果的に行う方法を提案する。
論文 参考訳(メタデータ) (2020-07-12T12:06:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。