論文の概要: Evaluating Large Language Models as Virtual Annotators for Time-series Physical Sensing Data
- arxiv url: http://arxiv.org/abs/2403.01133v2
- Date: Sun, 14 Apr 2024 11:24:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 20:21:55.130491
- Title: Evaluating Large Language Models as Virtual Annotators for Time-series Physical Sensing Data
- Title(参考訳): 時系列物理センシングデータのための仮想アノテーションとしての大規模言語モデルの評価
- Authors: Aritra Hota, Soumyajit Chatterjee, Sandip Chakraborty,
- Abstract要約: 時系列物理センシングデータをラベル付けするための仮想アノテータとして, 最先端(SOTA) LLM が利用できるかを検討した。
- 参考スコア(独自算出の注目度): 5.092345761847645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional human-in-the-loop-based annotation for time-series data like inertial data often requires access to alternate modalities like video or audio from the environment. These alternate sources provide the necessary information to the human annotator, as the raw numeric data is often too obfuscated even for an expert. However, this traditional approach has many concerns surrounding overall cost, efficiency, storage of additional modalities, time, scalability, and privacy. Interestingly, recent large language models (LLMs) are also trained with vast amounts of publicly available alphanumeric data, which allows them to comprehend and perform well on tasks beyond natural language processing. Naturally, this opens up a potential avenue to explore LLMs as virtual annotators where the LLMs will be directly provided the raw sensor data for annotation instead of relying on any alternate modality. Naturally, this could mitigate the problems of the traditional human-in-the-loop approach. Motivated by this observation, we perform a detailed study in this paper to assess whether the state-of-the-art (SOTA) LLMs can be used as virtual annotators for labeling time-series physical sensing data. To perform this in a principled manner, we segregate the study into two major phases. In the first phase, we investigate the challenges an LLM like GPT-4 faces in comprehending raw sensor data. Considering the observations from phase 1, in the next phase, we investigate the possibility of encoding the raw sensor data using SOTA SSL approaches and utilizing the projected time-series data to get annotations from the LLM. Detailed evaluation with four benchmark HAR datasets shows that SSL-based encoding and metric-based guidance allow the LLM to make more reasonable decisions and provide accurate annotations without requiring computationally expensive fine-tuning or sophisticated prompt engineering.
- Abstract(参考訳): 慣性データのような時系列データのための従来のヒューマン・イン・ザ・ループ・ベースのアノテーションは、しばしば環境からのビデオやオーディオのような代替のモダリティにアクセスする必要がある。
これらの代替情報源は人間のアノテータに必要な情報を提供するが、生の数値データは専門家にとっても難解すぎることが多い。
しかしながら、この従来のアプローチには、全体的なコスト、効率、追加のモダリティの保存、時間、スケーラビリティ、プライバシに関する多くの懸念がある。
興味深いことに、最近の大規模言語モデル (LLMs) も、膨大な量の公用アルファ数値データで訓練されており、自然言語処理以外のタスクを理解、実行することができる。
当然、これはLLMを仮想アノテータとして探索するための潜在的な道を開く。そこでは、LLMは代替のモダリティに頼るのではなく、アノテーションのために生のセンサーデータを直接供給する。
当然のことながら、これは従来のヒューマン・イン・ザ・ループ・アプローチの問題を緩和する可能性がある。
本報告では, 時系列物理センシングデータをラベル付けするための仮想アノテータとして, 最先端(SOTA) LLMを使用できるかどうかを詳細に検討する。
これを原則的に実施するために、我々は研究を2つの主要な段階に分けた。
第1段階では,GPT-4のようなLCMが生センサデータを解釈する際に直面する課題について検討する。
フェーズ1の観測から次のフェーズにおいて,SOTA SSLアプローチを用いて生センサデータを符号化し,予測した時系列データを用いてLCMからアノテーションを取得する可能性を検討する。
4つのベンチマークHARデータセットによる詳細な評価は、SSLベースのエンコーディングとメトリックベースのガイダンスにより、計算コストのかかる微調整や高度なプロンプトエンジニアリングを必要とせずに、LSMがより合理的な判断と正確なアノテーションを提供できるようになることを示している。
関連論文リスト
- SensorLLM: Aligning Large Language Models with Motion Sensors for Human Activity Recognition [9.072495000412943]
我々は、Large Language Models(LLM)が人間の活動認識(HAR)のような時系列タスクを理解できるようにすることで、ウェアラブルセンサー技術とパーソナライズされたAIアシスタントのギャップを埋める。
センサデータタスクに対するLLMのポテンシャルを解放する2段階フレームワークであるSensorLLMを紹介する。
我々は,SensorLLMが効果的なセンサ学習者,推論者,学習者へと進化し,HARタスクのための多様なデータセットをまたいで一般化できることを示す。
論文 参考訳(メタデータ) (2024-10-14T15:30:41Z) - Formality is Favored: Unraveling the Learning Preferences of Large Language Models on Data with Conflicting Knowledge [55.65162959527848]
大規模言語モデルは、多くの知識集約的なタスクにおいて優れたパフォーマンスを示している。
しかし、事前学習データには誤解を招く傾向があり、矛盾する情報も含まれている。
本研究では,LLMの学習嗜好を,矛盾する知識を持つデータに対して体系的に分析する。
論文 参考訳(メタデータ) (2024-10-07T06:49:41Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Large Language Models Memorize Sensor Datasets! Implications on Human Activity Recognition Research [0.23982628363233693]
本研究では,Large Language Models (LLMs) が,訓練中にHAR(Human Activity Recognition)データセットにアクセス可能かどうかを検討する。
ほとんどの現代のLLMは、事実上(アクセス可能な)インターネット上でトレーニングされています。
特にダフネットデータセットでは、GPT-4はセンサー読み取りのブロックを再現することができる。
論文 参考訳(メタデータ) (2024-06-09T19:38:27Z) - Large Language Models for Data Annotation: A Survey [49.8318827245266]
LLM(Advanced Large Language Models)の出現は、データアノテーションの複雑なプロセスを自動化する前例のない機会を提供する。
この調査には、LLMが注釈付けできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションにLLMを使用する際の主な課題と制限に関する詳細な議論が含まれている。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - How Can Large Language Models Understand Spatial-Temporal Data? [12.968952073740796]
本稿では,時空間予測に大規模言語モデルを活用する革新的なアプローチSTG-LLMを紹介する。
1 STG-Tokenizer: この空間時間グラフトークンは、複雑なグラフデータを、空間的および時間的関係の両方を捉える簡潔なトークンに変換する; 2) STG-Adapter: 線形符号化層と復号層からなるこの最小限のアダプタは、トークン化されたデータとLCMの理解のギャップを埋める。
論文 参考訳(メタデータ) (2024-01-25T14:03:15Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
実運用における機械学習モデル監視の重要な部分は、入力と出力データのドリフトを測定することである。
大規模言語モデル(LLM)の最近の進歩は、意味的関係を捉える上での有効性を示している。
このような埋め込みを利用してテキストデータの分布変化を測定するクラスタリングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-04T20:46:48Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。