論文の概要: Context is Key: A Benchmark for Forecasting with Essential Textual Information
- arxiv url: http://arxiv.org/abs/2410.18959v3
- Date: Thu, 06 Feb 2025 19:05:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:54:48.372195
- Title: Context is Key: A Benchmark for Forecasting with Essential Textual Information
- Title(参考訳): Context is Key: 本質的なテキスト情報による予測のためのベンチマーク
- Authors: Andrew Robert Williams, Arjun Ashok, Étienne Marcotte, Valentina Zantedeschi, Jithendaraa Subramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Chapados, Alexandre Drouin,
- Abstract要約: コンテキスト is Key" (CiK) は、数値データを多種多様なテキストコンテキストと組み合わせた予測ベンチマークである。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
提案手法は,提案するベンチマークにおいて,他の試験手法よりも優れる簡易かつ効果的なLCMプロンプト法である。
- 参考スコア(独自算出の注目度): 87.3175915185287
- License:
- Abstract: Forecasting is a critical task in decision-making across numerous domains. While historical numerical data provide a start, they fail to convey the complete context for reliable and accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge and constraints, which can efficiently be communicated through natural language. However, in spite of recent progress with LLM-based forecasters, their ability to effectively integrate this textual information remains an open question. To address this, we introduce "Context is Key" (CiK), a time-series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities; crucially, every task in CiK requires understanding textual context to be solved successfully. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. This benchmark aims to advance multimodal forecasting by promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/.
- Abstract(参考訳): 予測は、多くのドメインにわたる意思決定において重要なタスクである。
歴史的数値データがスタートを提供する一方で、信頼性と正確な予測のための完全なコンテキストを伝達することができない。
人間の予測者は、しばしば背景知識や制約などの追加情報に頼り、自然言語を通して効率的にコミュニケーションできる。
しかし、近年のLSMベースの予測器の進歩にもかかわらず、これらのテキスト情報を効果的に統合する能力は未解決の課題である。
これに対処するために、我々は、時系列予測ベンチマークである"Context is Key"(CiK)を紹介した。このベンチマークは、数値データを多種多様なテクスチャコンテキストと組み合わせ、モデルに両方のモダリティを統合する必要がある。
我々は,統計モデル,時系列基礎モデル,LSMに基づく予測手法など,様々な手法を評価し,ベンチマーク上の他の試験手法よりも優れた簡易かつ効果的なLSMプロンプト手法を提案する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
このベンチマークは、様々な技術的専門知識を持つ意思決定者に対して正確かつアクセシブルなモデルを促進することで、マルチモーダル予測を促進することを目的としている。
ベンチマークはhttps://servicenow.github.io/context-is-key-forecasting/v0/で視覚化できる。
関連論文リスト
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAPは、時系列データのコンテキスト化ツールとしてLarge Language Models(LLM)を創造的に利用する時系列処理フレームワークである。
TimeCAPには2つの独立したLCMエージェントが組み込まれており、1つは時系列のコンテキストをキャプチャするテキスト要約を生成し、もう1つはより情報のある予測を行うためにこのリッチな要約を使用する。
実世界のデータセットによる実験結果から,TimeCAPは時系列イベント予測の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-17T04:17:27Z) - Quantifying Qualitative Insights: Leveraging LLMs to Market Predict [0.0]
本研究は、証券会社からの日々の報告を活用して高品質な文脈情報を作成することによる課題に対処する。
レポートはテキストベースのキーファクタにセグメント化され、価格情報などの数値データと組み合わせてコンテキストセットを形成する。
工芸的なプロンプトは重要な要素にスコアを割り当て、質的な洞察を定量的な結果に変換するように設計されている。
論文 参考訳(メタデータ) (2024-11-13T07:45:40Z) - A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting [45.0261082985087]
時間的事象予測のための大規模言語モデル(LLM)を総合的に評価する。
LLMの入力に生テキストを直接統合しても、ゼロショット補間性能は向上しないことがわかった。
対照的に、特定の複雑なイベントや微調整LDMに生テキストを組み込むことで、性能が大幅に向上する。
論文 参考訳(メタデータ) (2024-07-16T11:58:54Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language [35.84181171987974]
我々のゴールは、数値データを処理し、任意の場所で確率的予測を行うレグレッションモデルを構築することである。
まず、大規模言語モデルから明示的で一貫性のある数値予測分布を抽出する戦略を探求する。
本研究では,テキストを数値予測に組み込む能力を示し,予測性能を改善し,定性的な記述を反映した定量的な構造を与える。
論文 参考訳(メタデータ) (2024-05-21T15:13:12Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context
Learning [23.971206470486468]
本稿では,関連する歴史的事実をプロンプトに変換し,トークン確率を用いてランキング予測を生成する枠組みを提案する。
驚いたことに、LLMは最先端のTKGモデルと同等に動作している。
また,エンティティ/リレーション名の代わりに数値指標を用いると,性能に悪影響を及ぼさないことも判明した。
論文 参考訳(メタデータ) (2023-05-17T23:50:28Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。