Single-image camera calibration with model-free distortion correction
- URL: http://arxiv.org/abs/2403.01263v2
- Date: Mon, 24 Jun 2024 17:49:37 GMT
- Title: Single-image camera calibration with model-free distortion correction
- Authors: Katia Genovese,
- Abstract summary: This paper proposes a method for estimating the complete set of calibration parameters from a single image of a planar speckle pattern covering the entire sensor.
The correspondence between image points and physical points on the calibration target is obtained using Digital Image Correlation.
At the end of the procedure, a dense and uniform model-free distortion map is obtained over the entire image.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Camera calibration is a process of paramount importance in computer vision applications that require accurate quantitative measurements. The popular method developed by Zhang relies on the use of a large number of images of a planar grid of fiducial points captured in multiple poses. Although flexible and easy to implement, Zhang's method has some limitations. The simultaneous optimization of the entire parameter set, including the coefficients of a predefined distortion model, may result in poor distortion correction at the image boundaries or in miscalculation of the intrinsic parameters, even with a reasonably small reprojection error. Indeed, applications involving image stitching (e.g. multi-camera systems) require accurate mapping of distortion up to the outermost regions of the image. Moreover, intrinsic parameters affect the accuracy of camera pose estimation, which is fundamental for applications such as vision servoing in robot navigation and automated assembly. This paper proposes a method for estimating the complete set of calibration parameters from a single image of a planar speckle pattern covering the entire sensor. The correspondence between image points and physical points on the calibration target is obtained using Digital Image Correlation. The effective focal length and the extrinsic parameters are calculated separately after a prior evaluation of the principal point. At the end of the procedure, a dense and uniform model-free distortion map is obtained over the entire image. Synthetic data with different noise levels were used to test the feasibility of the proposed method and to compare its metrological performance with Zhang's method. Real-world tests demonstrate the potential of the developed method to reveal aspects of the image formation that are hidden by averaging over multiple images.
Related papers
- Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
We present an improved solution to the neural image-based rendering problem in computer vision.
The proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time.
arXiv Detail & Related papers (2023-11-08T08:18:23Z) - How to turn your camera into a perfect pinhole model [0.38233569758620056]
We propose a novel approach that involves a pre-processing step to remove distortions from images.
Our method does not need to assume any distortion model and can be applied to severely warped images.
This model allows for a serious upgrade of many algorithms and applications.
arXiv Detail & Related papers (2023-09-20T13:54:29Z) - Self-Supervised Camera Self-Calibration from Video [34.35533943247917]
We propose a learning algorithm to regress per-sequence calibration parameters using an efficient family of general camera models.
Our procedure achieves self-calibration results with sub-pixel reprojection error, outperforming other learning-based methods.
arXiv Detail & Related papers (2021-12-06T19:42:05Z) - Camera Distortion-aware 3D Human Pose Estimation in Video with
Optimization-based Meta-Learning [23.200130129530653]
Existing 3D human pose estimation algorithms trained on distortion-free datasets suffer performance drop when applied to new scenarios with a specific camera distortion.
We propose a simple yet effective model for 3D human pose estimation in video that can quickly adapt to any distortion environment.
arXiv Detail & Related papers (2021-11-30T01:35:04Z) - How to Calibrate Your Event Camera [58.80418612800161]
We propose a generic event camera calibration framework using image reconstruction.
We show that neural-network-based image reconstruction is well suited for the task of intrinsic and extrinsic calibration of event cameras.
arXiv Detail & Related papers (2021-05-26T07:06:58Z) - Calibrated and Partially Calibrated Semi-Generalized Homographies [65.29477277713205]
We propose the first minimal solutions for estimating the semi-generalized homography given a perspective and a generalized camera.
The proposed solvers are stable and efficient as demonstrated by a number of synthetic and real-world experiments.
arXiv Detail & Related papers (2021-03-11T08:56:24Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Zero-Shot Calibration of Fisheye Cameras [0.010956300138340428]
The proposed method estimates camera parameters from the horizontal and vertical field of view information of the camera without any image acquisition.
The method is particularly useful for wide-angle or fisheye cameras that have large image distortion.
arXiv Detail & Related papers (2020-11-30T08:10:24Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
arXiv Detail & Related papers (2020-10-30T17:28:40Z) - A Deep Ordinal Distortion Estimation Approach for Distortion Rectification [62.72089758481803]
We propose a novel distortion rectification approach that can obtain more accurate parameters with higher efficiency.
We design a local-global associated estimation network that learns the ordinal distortion to approximate the realistic distortion distribution.
Considering the redundancy of distortion information, our approach only uses a part of distorted image for the ordinal distortion estimation.
arXiv Detail & Related papers (2020-07-21T10:03:42Z) - Superaccurate Camera Calibration via Inverse Rendering [0.19336815376402716]
We propose a new method for camera calibration using the principle of inverse rendering.
Instead of relying solely on detected feature points, we use an estimate of the internal parameters and the pose of the calibration object to implicitly render a non-photorealistic equivalent of the optical features.
arXiv Detail & Related papers (2020-03-20T10:26:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.