PRaDA: Projective Radial Distortion Averaging
- URL: http://arxiv.org/abs/2504.16499v1
- Date: Wed, 23 Apr 2025 08:22:59 GMT
- Title: PRaDA: Projective Radial Distortion Averaging
- Authors: Daniil Sinitsyn, Linus Härenstam-Nielsen, Daniel Cremers,
- Abstract summary: We tackle the problem of automatic calibration of radially distorted cameras in challenging conditions.<n>Our proposed method, Projective Radial Distortion Averaging, averages multiple distortion estimates in a fully projective framework.
- Score: 40.77624901787694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle the problem of automatic calibration of radially distorted cameras in challenging conditions. Accurately determining distortion parameters typically requires either 1) solving the full Structure from Motion (SfM) problem involving camera poses, 3D points, and the distortion parameters, which is only possible if many images with sufficient overlap are provided, or 2) relying heavily on learning-based methods that are comparatively less accurate. In this work, we demonstrate that distortion calibration can be decoupled from 3D reconstruction, maintaining the accuracy of SfM-based methods while avoiding many of the associated complexities. This is achieved by working in Projective Space, where the geometry is unique up to a homography, which encapsulates all camera parameters except for distortion. Our proposed method, Projective Radial Distortion Averaging, averages multiple distortion estimates in a fully projective framework without creating 3d points and full bundle adjustment. By relying on pairwise projective relations, our methods support any feature-matching approaches without constructing point tracks across multiple images.
Related papers
- AlignDiff: Learning Physically-Grounded Camera Alignment via Diffusion [0.5277756703318045]
We introduce a novel framework that addresses camera intrinsic and extrinsic parameters using a generic ray camera model.<n>Unlike previous approaches, AlignDiff shifts focus from semantic to geometric features, enabling more accurate modeling of local distortions.<n>Our experiments demonstrate that the proposed method significantly reduces the angular error of estimated ray bundles by 8.2 degrees and overall calibration accuracy, outperforming existing approaches on challenging, real-world datasets.
arXiv Detail & Related papers (2025-03-27T14:59:59Z) - RIGI: Rectifying Image-to-3D Generation Inconsistency via Uncertainty-aware Learning [27.4552892119823]
inconsistencies in multi-view snapshots frequently introduce noise and artifacts along object boundaries, undermining the 3D reconstruction process.
We leverage 3D Gaussian Splatting (3DGS) for 3D reconstruction, and explicitly integrate uncertainty-aware learning into the reconstruction process.
We apply adaptive pixel-wise loss weighting to regularize the models, reducing reconstruction intensity in high-uncertainty regions.
arXiv Detail & Related papers (2024-11-28T02:19:28Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Single-image camera calibration with model-free distortion correction [0.0]
This paper proposes a method for estimating the complete set of calibration parameters from a single image of a planar speckle pattern covering the entire sensor.
The correspondence between image points and physical points on the calibration target is obtained using Digital Image Correlation.
At the end of the procedure, a dense and uniform model-free distortion map is obtained over the entire image.
arXiv Detail & Related papers (2024-03-02T16:51:35Z) - W-HMR: Monocular Human Mesh Recovery in World Space with Weak-Supervised Calibration [57.37135310143126]
Previous methods for 3D motion recovery from monocular images often fall short due to reliance on camera coordinates.
We introduce W-HMR, a weak-supervised calibration method that predicts "reasonable" focal lengths based on body distortion information.
We also present the OrientCorrect module, which corrects body orientation for plausible reconstructions in world space.
arXiv Detail & Related papers (2023-11-29T09:02:07Z) - Towards Nonlinear-Motion-Aware and Occlusion-Robust Rolling Shutter
Correction [54.00007868515432]
Existing methods face challenges in estimating the accurate correction field due to the uniform velocity assumption.
We propose a geometry-based Quadratic Rolling Shutter (QRS) motion solver, which precisely estimates the high-order correction field of individual pixels.
Our method surpasses the state-of-the-art by +4.98, +0.77, and +4.33 of PSNR on Carla-RS, Fastec-RS, and BS-RSC datasets, respectively.
arXiv Detail & Related papers (2023-03-31T15:09:18Z) - Camera Distortion-aware 3D Human Pose Estimation in Video with
Optimization-based Meta-Learning [23.200130129530653]
Existing 3D human pose estimation algorithms trained on distortion-free datasets suffer performance drop when applied to new scenarios with a specific camera distortion.
We propose a simple yet effective model for 3D human pose estimation in video that can quickly adapt to any distortion environment.
arXiv Detail & Related papers (2021-11-30T01:35:04Z) - Calibrated and Partially Calibrated Semi-Generalized Homographies [65.29477277713205]
We propose the first minimal solutions for estimating the semi-generalized homography given a perspective and a generalized camera.
The proposed solvers are stable and efficient as demonstrated by a number of synthetic and real-world experiments.
arXiv Detail & Related papers (2021-03-11T08:56:24Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
arXiv Detail & Related papers (2020-10-30T17:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.