Data-driven local operator finding for reduced-order modelling of plasma
systems: II. Application to parametric dynamics
- URL: http://arxiv.org/abs/2403.01532v1
- Date: Sun, 3 Mar 2024 15:09:49 GMT
- Title: Data-driven local operator finding for reduced-order modelling of plasma
systems: II. Application to parametric dynamics
- Authors: Farbod Faraji, Maryam Reza, Aaron Knoll, J. Nathan Kutz
- Abstract summary: We present two adaptations of our data-driven local operator finding algorithm, Phi Method.
The "parametric Phi Method" and the "ensemble Phi Method" are demonstrated through 2D fluid-flow-past-a-cylinder and 1D Hall-thruster-plasma-discharge problems.
Across both test cases, parametric and ensemble Phi Method reliably recover governing parametric PDEs and offer accurate predictions over test parameters.
- Score: 3.203036813451742
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Real-world systems often exhibit dynamics influenced by various parameters,
either inherent or externally controllable, necessitating models capable of
reliably capturing these parametric behaviors. Plasma technologies exemplify
such systems. For example, phenomena governing global dynamics in Hall
thrusters (a spacecraft propulsion technology) vary with various parameters,
such as the "self-sustained electric field". In this Part II, following on the
introduction of our novel data-driven local operator finding algorithm, Phi
Method, in Part I, we showcase the method's effectiveness in learning
parametric dynamics to predict system behavior across unseen parameter spaces.
We present two adaptations: the "parametric Phi Method" and the "ensemble Phi
Method", which are demonstrated through 2D fluid-flow-past-a-cylinder and 1D
Hall-thruster-plasma-discharge problems. Comparative evaluation against
parametric OPT-DMD in the fluid case demonstrates superior predictive
performance of the parametric Phi Method. Across both test cases, parametric
and ensemble Phi Method reliably recover governing parametric PDEs and offer
accurate predictions over test parameters. Ensemble ROM analysis underscores
Phi Method's robust learning of dominant dynamic coefficients with high
confidence.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Data-driven local operator finding for reduced-order modelling of plasma
systems: I. Concept and verifications [2.9320342785886973]
Reduced-order plasma models can efficiently predict plasma behavior across various settings and configurations.
We introduce the "Phi Method" in this two-part article.
Part I presents this novel algorithm, which employs constrained regression on a candidate term library.
Part II will delve into the method's application for parametric dynamics discovery.
arXiv Detail & Related papers (2024-03-03T14:50:15Z) - Data-Driven Model Selections of Second-Order Particle Dynamics via
Integrating Gaussian Processes with Low-Dimensional Interacting Structures [0.9821874476902972]
We focus on the data-driven discovery of a general second-order particle-based model.
We present applications to modeling two real-world fish motion datasets.
arXiv Detail & Related papers (2023-11-01T23:45:15Z) - Parameter Identification for Partial Differential Equations with
Spatiotemporal Varying Coefficients [5.373009527854677]
We propose a framework that facilitates the investigation of parameter identification for multi-state systems governed by varying partial differential equations.
Our framework consists of two integral components: a constrained self-adaptive neural network, and a sub-network physics-informed neural network.
We have showcased the efficacy of our framework on two numerical cases: the 1D Burgers' cases with time-varying parameters and the 2 wave equation with a space-varying parameter.
arXiv Detail & Related papers (2023-06-30T07:17:19Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Support Vector Machine for Determining Euler Angles in an Inertial
Navigation System [55.41644538483948]
The paper discusses the improvement of the accuracy of an inertial navigation system created on the basis of MEMS sensors using machine learning (ML) methods.
The proposed algorithm based on MO has demonstrated its ability to correctly classify in the presence of noise typical for MEMS sensors.
arXiv Detail & Related papers (2022-12-07T10:01:11Z) - Optimizing Training Trajectories in Variational Autoencoders via Latent
Bayesian Optimization Approach [0.0]
Unsupervised and semi-supervised ML methods have become widely adopted across multiple areas of physics, chemistry, and materials sciences.
We propose a latent Bayesian optimization (zBO) approach for the hyper parameter trajectory optimization for the unsupervised and semi-supervised ML.
We demonstrate an application of this method for finding joint discrete and continuous rotationally invariant representations for MNIST and experimental data of a plasmonic nanoparticles material system.
arXiv Detail & Related papers (2022-06-30T23:41:47Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Bayesian multiscale deep generative model for the solution of
high-dimensional inverse problems [0.0]
A novel multiscale Bayesian inference approach is introduced based on deep probabilistic generative models.
The method allows high-dimensional parameter estimation while exhibiting stability, efficiency and accuracy.
arXiv Detail & Related papers (2021-02-04T11:47:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.