論文の概要: Hyperspectral Image Analysis in Single-Modal and Multimodal setting
using Deep Learning Techniques
- arxiv url: http://arxiv.org/abs/2403.01546v1
- Date: Sun, 3 Mar 2024 15:47:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 20:57:47.706260
- Title: Hyperspectral Image Analysis in Single-Modal and Multimodal setting
using Deep Learning Techniques
- Title(参考訳): 深層学習技術を用いた単一モード・マルチモーダル設定におけるハイパースペクトル画像解析
- Authors: Shivam Pande
- Abstract要約: ハイパースペクトルイメージングは、その例外的なスペクトル分解能のため、土地利用とカバーの正確な分類を提供する。
しかし、高次元化と空間分解能の制限による課題は、その効果を妨げている。
本研究では,深層学習技術を用いて特徴を効率的に処理し,抽出し,データを統合的に分類することで,これらの課題に対処する。
- 参考スコア(独自算出の注目度): 1.2328446298523066
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hyperspectral imaging provides precise classification for land use and cover
due to its exceptional spectral resolution. However, the challenges of high
dimensionality and limited spatial resolution hinder its effectiveness. This
study addresses these challenges by employing deep learning techniques to
efficiently process, extract features, and classify data in an integrated
manner. To enhance spatial resolution, we integrate information from
complementary modalities such as LiDAR and SAR data through multimodal
learning. Moreover, adversarial learning and knowledge distillation are
utilized to overcome issues stemming from domain disparities and missing
modalities. We also tailor deep learning architectures to suit the unique
characteristics of HSI data, utilizing 1D convolutional and recurrent neural
networks to handle its continuous spectral dimension. Techniques like visual
attention and feedback connections within the architecture bolster the
robustness of feature extraction. Additionally, we tackle the issue of limited
training samples through self-supervised learning methods, employing
autoencoders for dimensionality reduction and exploring semi-supervised
learning techniques that leverage unlabeled data. Our proposed approaches are
evaluated across various HSI datasets, consistently outperforming existing
state-of-the-art techniques.
- Abstract(参考訳): ハイパースペクトルイメージングは、その例外的なスペクトル分解能のため、土地利用とカバーの正確な分類を提供する。
しかし、高次元化と空間分解能の制限による課題は、その効果を妨げている。
本研究では,深層学習技術を用いて特徴を効率的に処理し,抽出し,データを統合的に分類することで,これらの課題に対処する。
空間分解能を高めるため,マルチモーダル学習を通じて,LiDARやSARデータなどの相補的モダリティからの情報を統合する。
さらに, ドメインの格差やモダリティの欠如から生じる問題を克服するために, 逆学習と知識蒸留を利用する。
また、1次元畳み込みおよび繰り返しニューラルネットワークを用いて、HSIデータのユニークな特性に適合するディープラーニングアーキテクチャを調整し、その連続スペクトル次元を処理する。
視覚的な注意とアーキテクチャ内のフィードバック接続のようなテクニックは、機能抽出の堅牢性を強化します。
さらに,自己教師あり学習手法による限定的な学習サンプル問題,次元低減のためのオートエンコーダの活用,ラベルなしデータを活用した半教師なし学習手法の検討を行った。
提案手法は様々なHSIデータセットで評価され,既存の最先端技術よりも一貫して優れている。
関連論文リスト
- A Dimensional Structure based Knowledge Distillation Method for
Cross-Modal Learning [15.544134849816528]
簡単な作業から抽出した特徴を解析・観察することで特徴識別性と次元構造(DS)の相関を見いだす。
クロスモーダル・ナレッジ・蒸留法 (CMKD) を提案し, 教師付きクロスモーダル・ラーニング (CML) の性能向上を図る。
提案手法は, チャネル的に独立して, 中間的な特徴を均一に分散させることで, その精度を高めるために, 難易度から意味的に無関係な特徴を学習する。
論文 参考訳(メタデータ) (2023-06-28T07:29:26Z) - Unsupervised Spike Depth Estimation via Cross-modality Cross-domain Knowledge Transfer [53.413305467674434]
スパイク深度推定をサポートするためにオープンソースのRGBデータを導入し,そのアノテーションと空間情報を活用する。
教師なしスパイク深さ推定を実現するために,クロスモーダルクロスドメイン(BiCross)フレームワークを提案する。
提案手法は,RGB指向の教師なし深度推定法と比較して,最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-08-26T09:35:20Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
本稿では,自己教師型学習のためのクラスタリングに基づくプレテキストタスクを用いて,土地被覆マッピングの新しい手法を提案する。
社会的に関係のある2つのアプリケーションに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-08-16T19:35:43Z) - A deep learning approach to clustering visual arts [7.363576598794859]
本稿では,deep Learning approach to cLustering vIsUal artSを提案する。
この方法は、事前訓練された畳み込みネットワークを使用して特徴を抽出し、これらの特徴を深い組込みクラスタリングモデルに供給する。
生の入力データを潜在空間にマッピングするタスクは、この潜在空間内のクラスタセントロイドの集合を見つけるタスクと共同で最適化される。
論文 参考訳(メタデータ) (2021-06-11T08:35:26Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - A Compact Deep Learning Model for Face Spoofing Detection [4.250231861415827]
プレゼンテーションアタック検出(PAD)は研究コミュニティから大きな注目を集めている。
我々は、統一されたニューラルネットワークアーキテクチャにおいて、幅広い機能と深い機能の両方を融合することで、この問題に対処する。
この手順は、ROSE-Youtu、SiW、NUAA Imposterなどのさまざまなスプーフィングデータセットで行われます。
論文 参考訳(メタデータ) (2021-01-12T21:20:09Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z) - MARS: Mixed Virtual and Real Wearable Sensors for Human Activity
Recognition with Multi-Domain Deep Learning Model [21.971345137218886]
仮想IMUに基づく大規模データベースの構築を提案し,その上で,3つの技術部分からなる多分野ディープラーニングフレームワークを導入することにより,技術的問題に対処する。
まず,混成畳み込みニューラルネットワーク(CNN)を用いたノイズの多いIMUデータから,単一フレームの人間活動について半教師付き形式で学習することを提案する。
第2の部分は、不確実性を認識した一貫性の原則に従って抽出されたデータ特徴を融合する。
転送学習は、最近リリースされたArchive of Motion Capture as Surface Shapes (AMASS)データセットに基づいて、最後の部分で実行される。
論文 参考訳(メタデータ) (2020-09-20T10:35:14Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。