Unsupervised Distance Metric Learning for Anomaly Detection Over
Multivariate Time Series
- URL: http://arxiv.org/abs/2403.01895v1
- Date: Mon, 4 Mar 2024 09:55:16 GMT
- Title: Unsupervised Distance Metric Learning for Anomaly Detection Over
Multivariate Time Series
- Authors: Hanyang Yuan, Qinglin Cai, Keting Yin
- Abstract summary: We propose FCM-wDTW, an unsupervised distance metric learning method for anomaly detection over time series.
FCM-wDTW encodes raw data into latent space and reveals normal dimension relationships through cluster centers.
Experiments with 11 different types of benchmarks demonstrate our method's competitive accuracy and efficiency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distance-based time series anomaly detection methods are prevalent due to
their relative non-parametric nature and interpretability. However, the
commonly used Euclidean distance is sensitive to noise. While existing works
have explored dynamic time warping (DTW) for its robustness, they only support
supervised tasks over multivariate time series (MTS), leaving a scarcity of
unsupervised methods. In this work, we propose FCM-wDTW, an unsupervised
distance metric learning method for anomaly detection over MTS, which encodes
raw data into latent space and reveals normal dimension relationships through
cluster centers. FCM-wDTW introduces locally weighted DTW into fuzzy C-means
clustering and learns the optimal latent space efficiently, enabling anomaly
identification via data reconstruction. Experiments with 11 different types of
benchmarks demonstrate our method's competitive accuracy and efficiency.
Related papers
- MTSCI: A Conditional Diffusion Model for Multivariate Time Series Consistent Imputation [41.681869408967586]
Key research question is how to ensure imputation consistency, i.e., intra-consistency between observed and imputed values.
Previous methods rely solely on the inductive bias of the imputation targets to guide the learning process.
arXiv Detail & Related papers (2024-08-11T10:24:53Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - HCL-MTSAD: Hierarchical Contrastive Consistency Learning for Accurate Detection of Industrial Multivariate Time Series Anomalies [4.806959791183183]
We propose a novel self-supervised hierarchical contrastive consistency learning method for detecting anomalies in industrial MTS.
By developing a multi-layer contrastive loss, HCL-MTSAD can extensively mine data consistency and timestamp-temporal association.
Experiments conducted on six diverse MTS retrieved from real cyber-physical systems and server machines, indicate that HCL-MTSAD's anomaly detection capability outperforms the state-of-the-art benchmark models by an average of 1.8% in terms of F1 score.
arXiv Detail & Related papers (2024-04-12T03:39:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
Remote Sensing Change Detection (RS-CD) aims to detect relevant changes from Multi-Temporal Remote Sensing Images (MT-RSIs)
The performance of existing RS-CD methods is attributed to training on large annotated datasets.
This paper proposes an unsupervised CD method based on deep metric learning that can deal with both of these issues.
arXiv Detail & Related papers (2023-03-16T17:52:45Z) - Generative Anomaly Detection for Time Series Datasets [1.7954335118363964]
Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems.
We propose a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies.
Our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score.
arXiv Detail & Related papers (2022-06-28T17:08:47Z) - (k, l)-Medians Clustering of Trajectories Using Continuous Dynamic Time
Warping [57.316437798033974]
In this work we consider the problem of center-based clustering of trajectories.
We propose the usage of a continuous version of DTW as distance measure, which we call continuous dynamic time warping (CDTW)
We show a practical way to compute a center from a set of trajectories and subsequently iteratively improve it.
arXiv Detail & Related papers (2020-12-01T13:17:27Z) - Graph Regularized Autoencoder and its Application in Unsupervised
Anomaly Detection [42.86693635734333]
We propose to use a minimum spanning tree (MST) to approximate the local neighborhood structure and generate structure-preserving distances among data points.
We develop a new graph regularized autoencoder, which outperforms a wide range of alternative methods over 20 benchmark anomaly detection datasets.
arXiv Detail & Related papers (2020-10-29T21:17:41Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.