Generative Anomaly Detection for Time Series Datasets
- URL: http://arxiv.org/abs/2206.14597v1
- Date: Tue, 28 Jun 2022 17:08:47 GMT
- Title: Generative Anomaly Detection for Time Series Datasets
- Authors: Zhuangwei Kang, Ayan Mukhopadhyay, Aniruddha Gokhale, Shijie Wen,
Abhishek Dubey
- Abstract summary: Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems.
We propose a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies.
Our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score.
- Score: 1.7954335118363964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic congestion anomaly detection is of paramount importance in
intelligent traffic systems. The goals of transportation agencies are two-fold:
to monitor the general traffic conditions in the area of interest and to locate
road segments under abnormal congestion states. Modeling congestion patterns
can achieve these goals for citywide roadways, which amounts to learning the
distribution of multivariate time series (MTS). However, existing works are
either not scalable or unable to capture the spatial-temporal information in
MTS simultaneously. To this end, we propose a principled and comprehensive
framework consisting of a data-driven generative approach that can perform
tractable density estimation for detecting traffic anomalies. Our approach
first clusters segments in the feature space and then uses conditional
normalizing flow to identify anomalous temporal snapshots at the cluster level
in an unsupervised setting. Then, we identify anomalies at the segment level by
using a kernel density estimator on the anomalous cluster. Extensive
experiments on synthetic datasets show that our approach significantly
outperforms several state-of-the-art congestion anomaly detection and diagnosis
methods in terms of Recall and F1-Score. We also use the generative model to
sample labeled data, which can train classifiers in a supervised setting,
alleviating the lack of labeled data for anomaly detection in sparse settings.
Related papers
- Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Time-series Anomaly Detection via Contextual Discriminative Contrastive
Learning [0.0]
One-class classification methods are commonly used for anomaly detection tasks.
We propose a novel approach inspired by the loss function of DeepSVDD.
We combine our approach with a deterministic contrastive loss from Neutral AD, a promising self-supervised learning anomaly detection approach.
arXiv Detail & Related papers (2023-04-16T21:36:19Z) - Time series anomaly detection with reconstruction-based state-space
models [10.085100442558828]
We propose a novel unsupervised anomaly detection method for time series data.
A long short-term memory (LSTM)-based encoder-decoder is adopted to represent the mapping between the observation space and the latent space.
Regularization of the latent space places constraints on the states of normal samples, and Mahalanobis distance is used to evaluate the abnormality level.
arXiv Detail & Related papers (2023-03-06T17:52:35Z) - DEGAN: Time Series Anomaly Detection using Generative Adversarial
Network Discriminators and Density Estimation [0.0]
We have proposed an unsupervised Generative Adversarial Network (GAN)-based anomaly detection framework, DEGAN.
It relies solely on normal time series data as input to train a well-configured discriminator (D) into a standalone anomaly predictor.
arXiv Detail & Related papers (2022-10-05T04:32:12Z) - Deep Federated Anomaly Detection for Multivariate Time Series Data [93.08977495974978]
We present a Federated Exemplar-based Deep Neural Network (Fed-ExDNN) to conduct anomaly detection for multivariate time series data on different edge devices.
We show that ExDNN and Fed-ExDNN can outperform state-of-the-art anomaly detection algorithms and federated learning techniques.
arXiv Detail & Related papers (2022-05-09T05:06:58Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Graph Convolutional Networks for traffic anomaly [4.172516437934823]
Event detection has been an important task in transportation, whose task is to detect points in time when large events disrupts a large portion of the urban traffic network.
To fully capture the spatial and temporal traffic patterns remains a challenge, yet serves a crucial role for effective anomaly detection.
We formulate the problem in a novel way, as detecting anomalies in a set of directed weighted graphs representing the traffic conditions at each time interval.
arXiv Detail & Related papers (2020-12-25T22:36:22Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Anomaly Detection in Trajectory Data with Normalizing Flows [0.0]
We propose an approach based on normalizing flows that enables complex density estimation from data with neural networks.
Our proposal computes exact model likelihood values, an important feature of normalizing flows, for each segment of the trajectory.
We evaluate our methodology, named aggregated anomaly detection with normalizing flows (GRADINGS), using real world trajectory data and compare it with more traditional anomaly detection techniques.
arXiv Detail & Related papers (2020-04-13T14:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.