論文の概要: DECIDER: A Rule-Controllable Decoding Strategy for Language Generation by Imitating Dual-System Cognitive Theory
- arxiv url: http://arxiv.org/abs/2403.01954v2
- Date: Thu, 9 May 2024 09:21:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 17:39:27.501722
- Title: DECIDER: A Rule-Controllable Decoding Strategy for Language Generation by Imitating Dual-System Cognitive Theory
- Title(参考訳): DECIDER:デュアルシステム認知理論の省略による言語生成のためのルール制御可能なデコード戦略
- Authors: Chen Xu, Tian Lan, Changlong Yu, Wei Wang, Jun Gao, Yu Ji, Qunxi Dong, Kun Qian, Piji Li, Wei Bi, Bin Hu,
- Abstract要約: 両システム認知理論に着想を得た制約付き言語生成のためのルール制御可能な復号法であるDECIDERを提案する。
具体的には、DECDERにおいて、事前学習された言語モデル(PLM)に高レベルのルールを入力として取り込む論理推論器を装備し、その後、DECDERは各復号ステップでルール信号がPLMに流れ込むことを可能にする。
- 参考スコア(独自算出の注目度): 57.07295906718989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lexicon-based constrained decoding approaches aim to control the meaning or style of the generated text through certain target concepts. Existing approaches over-focus the targets themselves, leading to a lack of high-level reasoning about how to achieve them. However, human usually tackles tasks by following certain rules that not only focuses on the targets but also on semantically relevant concepts that induce the occurrence of targets. In this work, we present DECIDER, a rule-controllable decoding strategy for constrained language generation inspired by dual-system cognitive theory. Specifically, in DECIDER, a pre-trained language model (PLM) is equiped with a logic reasoner that takes high-level rules as input. Then, the DECIDER allows rule signals to flow into the PLM at each decoding step. Extensive experimental results demonstrate that DECIDER can effectively follow given rules to guide generation direction toward the targets in a more human-like manner.
- Abstract(参考訳): 辞書ベースの制約付き復号法は、特定のターゲット概念を通じて生成されたテキストの意味やスタイルを制御することを目的としている。
既存のアプローチはターゲット自体に過度に焦点を合わせ、その達成方法に関する高レベルの推論が欠如している。
しかしながら、人間は通常、目標だけでなく、目標の発生を誘発する意味論的に関連する概念にも焦点をあてる特定の規則に従うことでタスクに取り組む。
本稿では,二体系認知理論に触発された制約付き言語生成のためのルール制御可能な復号法であるDECIDERを提案する。
具体的には、DECDERでは、事前訓練された言語モデル(PLM)に高レベルのルールを入力として取り込む論理推論器を装備する。
そして、DECDERは、各復号ステップでルール信号がPLMに流れ込むことを可能にする。
広範囲な実験結果から、DECDERは、より人間的な方法で生成方向を目標に導くために、与えられた規則を効果的に従えることが示されている。
関連論文リスト
- CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - Natural Language as Policies: Reasoning for Coordinate-Level Embodied Control with LLMs [7.746160514029531]
ロボットのタスク計画問題に対処するLLMによる実験結果を示す。
提案手法はタスクとシーンオブジェクトのテキスト記述を取得し,自然言語推論によるタスクプランニングを定式化する。
提案手法はマルチモーダル・プロンプト・シミュレーション・ベンチマークを用いて評価する。
論文 参考訳(メタデータ) (2024-03-20T17:58:12Z) - Successor Features for Efficient Multisubject Controlled Text Generation [48.37713738712319]
本稿では,後継機能 (SF) と言語モデル修正の2つの基本概念を基礎とするSF-GENを紹介する。
SF-GENはこの2つをシームレスに統合し、LCMのパラメータを変更することなくテキスト生成の動的ステアリングを可能にする。
我々の知る限り、本研究はテキスト生成における後継機能の最初の応用である。
論文 参考訳(メタデータ) (2023-11-03T00:17:08Z) - PADL: Language-Directed Physics-Based Character Control [66.517142635815]
本稿では,文字が行うべきハイレベルなタスクと低レベルなスキルを指定するために,ユーザが自然言語コマンドを発行できるようにするPADLを提案する。
我々は,シミュレーションされたヒューマノイドキャラクタを効果的に誘導し,多種多様な複雑な運動能力を実現するために,本フレームワークを適用した。
論文 参考訳(メタデータ) (2023-01-31T18:59:22Z) - Learning to Solve Voxel Building Embodied Tasks from Pixels and Natural
Language Instructions [53.21504989297547]
本研究では,Minecraftのような環境下でのオブジェクト構築作業において,言語モデルと強化学習を組み合わせた新しい手法を提案する。
提案手法は,まず命令から一貫した達成可能なサブゴールのセットを生成し,学習済みのRLポリシーで関連するサブタスクを完了させる。
論文 参考訳(メタデータ) (2022-11-01T18:30:42Z) - Controllable Natural Language Generation with Contrastive Prefixes [120.12778570283956]
GPT2生成は、自然言語生成を操るために、プレフィックスと呼ばれる小さな属性固有のベクトルのセットを利用する。
単一アスペクト制御のための接頭辞を訓練するための新しい教師なし手法と教師なし手法を提案する。
単一アスペクト制御と多アスペクト制御の両方の実験結果から,提案手法は高い言語的品質を維持しつつ,所望の属性に向かって生成を導くことができることがわかった。
論文 参考訳(メタデータ) (2022-02-27T00:31:03Z) - Natural Language Specification of Reinforcement Learning Policies
through Differentiable Decision Trees [10.406631494442683]
人間-AIポリシー仕様は、人間がロボットの強化学習ポリシーを協調的に温めるための、我々が定義した新しい手順である。
我々は,自律エージェントの行動の初期化と解釈を可能にする,新しい協調フレームワークを開発した。
提案手法は,ドメイン探索コストを増大させることなく,未経験の自然言語仕様を利用することで,RLエージェントをウォームスタートさせる。
論文 参考訳(メタデータ) (2021-01-18T16:07:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。