Topological rejection of noise by quantum skyrmions
- URL: http://arxiv.org/abs/2403.02031v2
- Date: Thu, 29 Aug 2024 06:19:31 GMT
- Title: Topological rejection of noise by quantum skyrmions
- Authors: Pedro Ornelas, Isaac Nape, Robert De Mello Koch, Andrew Forbes,
- Abstract summary: We show that quantum skyrmions and their nonlocal topological observables remain resilient to noise even as typical entanglement witnesses and measures of the state decay.
This allows us to introduce the notion of digitization of quantum information based on our new discrete topological quantum observables.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An open challenge in the context of quantum information processing and communication is improving the robustness of quantum information to environmental contributions of noise, a severe hindrance in real-world scenarios. Here, we show that quantum skyrmions and their nonlocal topological observables remain resilient to noise even as typical entanglement witnesses and measures of the state decay. This allows us to introduce the notion of digitization of quantum information based on our new discrete topological quantum observables, foregoing the need for robustness of entanglement. We compliment our experiments with a full theoretical treatment that unlocks the quantum mechanisms behind the topological behaviour, explaining why the topology leads to robustness. Our approach holds exciting promise for intrinsic quantum information resilience through topology, highly applicable to real-world systems such as global quantum networks and noisy quantum computers.
Related papers
- Corrupted sensing quantum state tomography [0.0]
We propose the concept of corrupted sensing quantum state tomography which enables the simultaneous reconstruction of quantum states and structured noise.
It is envisaged that the techniques can become a practical tool to greatly reduce the cost and computational effort for quantum tomography in noisy quantum systems.
arXiv Detail & Related papers (2024-05-23T10:13:59Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Noise-assisted digital quantum simulation of open systems [1.3124513975412255]
We present a novel approach that capitalizes on the intrinsic noise of quantum devices to reduce the computational resources required for simulating open quantum systems.
Specifically, we selectively enhance or reduce decoherence rates in the quantum circuit to achieve the desired simulation of open system dynamics.
arXiv Detail & Related papers (2023-02-28T14:21:43Z) - Self-consistent noise characterization of quantum devices [0.0]
We develop an approach to reduce the quantum environment causing single-qubit dephasing to a simple yet predictive noise model.
We demonstrate the power and limits of our approach by characterizing, with nanoscale spatial resolution, the noise experienced by two electronic spins in diamond.
arXiv Detail & Related papers (2022-10-17T19:10:56Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Information recoverability of noisy quantum states [5.526775342940154]
We introduce a systematic framework to study how well we can retrieve information from noisy quantum states.
We fully characterize the range of recoverable classical information.
We also resolve the minimum information retrieving cost, which, along with the corresponding optimal protocol, is efficiently computable by semidefinite programming.
arXiv Detail & Related papers (2022-03-09T16:38:09Z) - Neural Error Mitigation of Near-Term Quantum Simulations [0.0]
We introduce $textitneural error mitigation$, a novel method that uses neural networks to improve estimates of ground states and ground-state observables.
Our results show that neural error mitigation improves the numerical and experimental VQE computation to yield low-energy errors.
Our method is a promising strategy for extending the reach of near-term quantum computers to solve complex quantum simulation problems.
arXiv Detail & Related papers (2021-05-17T18:00:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.