Scalable Vision-Based 3D Object Detection and Monocular Depth Estimation
for Autonomous Driving
- URL: http://arxiv.org/abs/2403.02037v1
- Date: Mon, 4 Mar 2024 13:42:54 GMT
- Title: Scalable Vision-Based 3D Object Detection and Monocular Depth Estimation
for Autonomous Driving
- Authors: Yuxuan Liu
- Abstract summary: This dissertation is a multifaceted contribution to the advancement of vision-based 3D perception technologies.
In the first segment, the thesis introduces structural enhancements to both monocular and stereo 3D object detection algorithms.
The second segment is devoted to data-driven strategies and their real-world applications in 3D vision detection.
- Score: 5.347428263669927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This dissertation is a multifaceted contribution to the advancement of
vision-based 3D perception technologies. In the first segment, the thesis
introduces structural enhancements to both monocular and stereo 3D object
detection algorithms. By integrating ground-referenced geometric priors into
monocular detection models, this research achieves unparalleled accuracy in
benchmark evaluations for monocular 3D detection. Concurrently, the work
refines stereo 3D detection paradigms by incorporating insights and inferential
structures gleaned from monocular networks, thereby augmenting the operational
efficiency of stereo detection systems. The second segment is devoted to
data-driven strategies and their real-world applications in 3D vision
detection. A novel training regimen is introduced that amalgamates datasets
annotated with either 2D or 3D labels. This approach not only augments the
detection models through the utilization of a substantially expanded dataset
but also facilitates economical model deployment in real-world scenarios where
only 2D annotations are readily available. Lastly, the dissertation presents an
innovative pipeline tailored for unsupervised depth estimation in autonomous
driving contexts. Extensive empirical analyses affirm the robustness and
efficacy of this newly proposed pipeline. Collectively, these contributions lay
a robust foundation for the widespread adoption of vision-based 3D perception
technologies in autonomous driving applications.
Related papers
- Open Vocabulary Monocular 3D Object Detection [10.424711580213616]
We pioneer the study of open-vocabulary monocular 3D object detection, a novel task that aims to detect and localize objects in 3D space from a single RGB image.
We introduce a class-agnostic approach that leverages open-vocabulary 2D detectors and lifts 2D bounding boxes into 3D space.
Our approach decouples the recognition and localization of objects in 2D from the task of estimating 3D bounding boxes, enabling generalization across unseen categories.
arXiv Detail & Related papers (2024-11-25T18:59:17Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D
Object Detection [15.204935788297226]
ODM3D framework entails cross-modal knowledge distillation at various levels to inject LiDAR-domain knowledge into a monocular detector during training.
By identifying foreground sparsity as the main culprit behind existing methods' suboptimal training, we exploit the precise localisation information embedded in LiDAR points.
Our method ranks 1st in both KITTI validation and test benchmarks, significantly surpassing all existing monocular methods, supervised or semi-supervised.
arXiv Detail & Related papers (2023-10-28T07:12:09Z) - LiDAR-Based 3D Object Detection via Hybrid 2D Semantic Scene Generation [38.38852904444365]
This paper proposes a novel scene representation that encodes both the semantics and geometry of the 3D environment in 2D.
Our simple yet effective design can be easily integrated into most state-of-the-art 3D object detectors.
arXiv Detail & Related papers (2023-04-04T04:05:56Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
arXiv Detail & Related papers (2021-12-28T07:31:18Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
We propose a stereo-guided monocular 3D object detection network, termed SGM3D.
We exploit robust 3D features extracted from stereo images to enhance the features learned from the monocular image.
Our method can be integrated into many other monocular approaches to boost performance without introducing any extra computational cost.
arXiv Detail & Related papers (2021-12-03T13:57:14Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.