Recovering Quantum Coherence of a Cavity Qubit Coupled to a Noisy Ancilla through Real-Time Feedback
- URL: http://arxiv.org/abs/2403.02081v3
- Date: Mon, 09 Dec 2024 14:57:57 GMT
- Title: Recovering Quantum Coherence of a Cavity Qubit Coupled to a Noisy Ancilla through Real-Time Feedback
- Authors: Uri Goldblatt, Nitzan Kahn, Sergey Hazanov, Ofir Milul, Barkay Guttel, Lalit M. Joshi, Daniel Chausovsky, Fabien Lafont, Serge Rosenblum,
- Abstract summary: A prominent source of errors arises from noise in coupled ancillas, which can quickly spread to qubits.<n>By monitoring these noisy ancillas, it is possible to identify qubit decoherence events and correct these errors in real time.<n>We uncover the intricate dynamics of decoherence in a superconducting cavity qubit due to its interaction with a noisy transmon ancilla.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Decoherence in qubits, caused by their interaction with a noisy environment, poses a significant challenge to the development of reliable quantum processors. A prominent source of errors arises from noise in coupled ancillas, which can quickly spread to qubits. By actively monitoring these noisy ancillas, it is possible to not only identify qubit decoherence events but also to correct these errors in real time. This approach is particularly beneficial for bosonic qubits, where the interaction with ancillas is a dominant source of decoherence. In this work, we uncover the intricate dynamics of decoherence in a superconducting cavity qubit due to its interaction with a noisy transmon ancilla. By tracking the noisy ancilla trajectory and using real-time feedback, we successfully recover the lost coherence of the cavity qubit, achieving a fivefold increase in its pure dephasing time. Additionally, by detecting ancilla errors and converting them into erasures, we improve the pure dephasing time by more than an order of magnitude. These advances are essential for realizing long-lived cavity qubits with high-fidelity gates, and they pave the way for more efficient bosonic quantum error-correction codes.
Related papers
- Fast charge noise sensing using a spectator valley state in a singlet-triplet qubit [0.0]
We propose a method for real-time detection of charge noise using a silicon singlet-triplet qubit with one electron in an excited valley state.<n> Dispersive readout of the resonator enables a continuous, classical measurement of exchange fluctuations.<n>Importantly, the protocol preserves spin coherence and can be run concurrently with qubit logic gates.
arXiv Detail & Related papers (2025-07-18T17:42:12Z) - Learning How to Dynamically Decouple [0.40964539027092917]
Current quantum computers suffer from noise that stems from interactions between the quantum system and its environment.
We show that the performance of dynamical decoupling can be improved by optimizing its rotational gates to tailor them to the quantum hardware.
arXiv Detail & Related papers (2024-05-14T15:11:39Z) - Passive and active suppression of transduced noise in silicon spin
qubits [0.0]
We show open- and closed-loop suppression techniques for the transduced noise in silicon spin qubits.
We show that adaptive qubit control also reduces the non-Markovian noise in the system.
The technique can be used to learn multiple Hamiltonian parameters and is useful for the intermittent calibration of the circuit parameters.
arXiv Detail & Related papers (2024-03-05T05:44:23Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Erasure detection of a dual-rail qubit encoded in a double-post
superconducting cavity [1.8484713576684788]
We implement a dual-rail qubit encoded in a compact, double-post superconducting cavity.
We measure an erasure rate of 3.981 +/- 0.003 (ms)-1 and a residual dephasing error rate up to 0.17 (ms)-1 within the codespace.
arXiv Detail & Related papers (2023-11-08T01:36:51Z) - Mechanically Induced Correlated Errors on Superconducting Qubits with
Relaxation Times Exceeding 0.4 Milliseconds [0.0]
Superconducting qubits are one of the most advanced candidates to realize scalable and fault-tolerant quantum computing.
Here, we realize ultra-coherent superconducting transmon qubits based on niobium capacitor electrodes, with lifetimes exceeding 0.4 ms.
By employing a nearly quantum-limited readout chain based on a Josephson traveling wave amplifier, we are able to simultaneously record bit-flip errors occurring in a multiple-qubit device.
We find that a pulse tube mechanical shock causes nonequilibrium dynamics of the qubits, leading to correlated bit-flip errors as well as transitions outside of the computational state space.
arXiv Detail & Related papers (2023-05-04T06:55:41Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - The effect of fast noise on the fidelity of trapped-ions quantum gates [0.0]
We study the effect of fast noise on the fidelity of one- and two-qubit gates in a trapped-ion system.
Our analysis can help in guiding the deign of quantum hardware platforms and gates, improving their fidelity towards fault-tolerant quantum computing.
arXiv Detail & Related papers (2022-08-06T19:37:00Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Scalable Method for Eliminating Residual $ZZ$ Interaction between
Superconducting Qubits [14.178204625914194]
We show a practically approach for complete cancellation of residual $ZZ$ interaction between fixed-frequency transmon qubits.
We verify the cancellation performance by measuring vanishing two-qubit entangling phases and $ZZ$ correlations.
Our method allows independent addressability of each qubit-qubit connection, and is applicable to both nontunable and tunable couplers.
arXiv Detail & Related papers (2021-11-26T02:04:49Z) - Suppressing Coherent Two-Qubit Errors via Dynamical Decoupling [20.280283640450723]
We show how to implement dynamical-decoupling techniques to suppress the two-qubit analogue of the dephasing on a superconducting quantum device.
The pure-dephasing time shows an up to 14 times enhancement on average when using robust sequences.
Our study further reveals the decohering processes associated with tunable couplers and establishes a framework to develop gates and sequences robust against two-qubit errors.
arXiv Detail & Related papers (2021-04-06T16:58:42Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.