Learning How to Dynamically Decouple
- URL: http://arxiv.org/abs/2405.08689v1
- Date: Tue, 14 May 2024 15:11:39 GMT
- Title: Learning How to Dynamically Decouple
- Authors: Arefur Rahman, Daniel J. Egger, Christian Arenz,
- Abstract summary: Current quantum computers suffer from noise that stems from interactions between the quantum system and its environment.
We show that the performance of dynamical decoupling can be improved by optimizing its rotational gates to tailor them to the quantum hardware.
- Score: 0.40964539027092917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current quantum computers suffer from noise that stems from interactions between the quantum system that constitutes the quantum device and its environment. These interactions can be suppressed through dynamical decoupling to reduce computational errors. However, the performance of dynamical decoupling depends on the type of the system-environment interactions that are present, which often lack an accurate model in quantum devices. We show that the performance of dynamical decoupling can be improved by optimizing its rotational gates to tailor them to the quantum hardware. We find that compared to canonical decoupling sequences, such as CPMG and XY4, the optimized dynamical decoupling sequences yield the best performance in suppressing noise in superconducting qubits. Our work thus enhances existing error suppression methods which helps increase circuit depth and result quality on noisy hardware.
Related papers
- Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - Pulse-efficient quantum machine learning [0.0]
We investigate the impact of pulse-efficient circuits on quantum machine learning algorithms.
We find that pulse-efficient transpilation vastly reduces average circuit durations.
We conclude by applying pulse-efficient transpilation to the Hamiltonian Variational Ansatz and show that it delays the onset of noise-induced barren plateaus.
arXiv Detail & Related papers (2022-11-02T18:00:01Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Error-Mitigated Simulation of Quantum Many-Body Scars on Quantum
Computers with Pulse-Level Control [0.0]
We simulate the dynamics of an antiferromagnetic initial state in mixed-field Ising chains of up to 19 sites.
We find coherent dynamics to persist over up to 40 Trotter steps even in the presence of various sources of error.
arXiv Detail & Related papers (2022-03-15T22:12:25Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
Super superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors.
ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors.
We propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments on several IBM quantum cloud processors.
arXiv Detail & Related papers (2021-08-10T09:16:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Process tomography of Robust Dynamical Decoupling in Superconducting
Qubits [91.3755431537592]
The Rigetti quantum computing platform was used to test different dynamical decoupling sequences.
The performance of the sequences was characterized by Quantum Process Tomography and analyzed using the quantum channels formalism.
arXiv Detail & Related papers (2020-06-18T14:48:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.