Interpretable Models for Detecting and Monitoring Elevated Intracranial
Pressure
- URL: http://arxiv.org/abs/2403.02236v1
- Date: Mon, 4 Mar 2024 17:29:03 GMT
- Title: Interpretable Models for Detecting and Monitoring Elevated Intracranial
Pressure
- Authors: Darryl Hannan, Steven C. Nesbit, Ximing Wen, Glen Smith, Qiao Zhang,
Alberto Goffi, Vincent Chan, Michael J. Morris, John C. Hunninghake, Nicholas
E. Villalobos, Edward Kim, Rosina O. Weber, Christopher J. MacLellan
- Abstract summary: We propose two systems that actively monitor the ONS diameter throughout an ultrasound video and make a final prediction as to whether ICP is elevated.
To construct our systems, we leverage subject matter expert (SME) guidance, structuring our processing pipeline according to their collection procedure.
One of our SMEs then manually validates our top system's performance, lending further credibility to our approach.
- Score: 5.63693072017569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting elevated intracranial pressure (ICP) is crucial in diagnosing and
managing various neurological conditions. These fluctuations in pressure are
transmitted to the optic nerve sheath (ONS), resulting in changes to its
diameter, which can then be detected using ultrasound imaging devices. However,
interpreting sonographic images of the ONS can be challenging. In this work, we
propose two systems that actively monitor the ONS diameter throughout an
ultrasound video and make a final prediction as to whether ICP is elevated. To
construct our systems, we leverage subject matter expert (SME) guidance,
structuring our processing pipeline according to their collection procedure,
while also prioritizing interpretability and computational efficiency. We
conduct a number of experiments, demonstrating that our proposed systems are
able to outperform various baselines. One of our SMEs then manually validates
our top system's performance, lending further credibility to our approach while
demonstrating its potential utility in a clinical setting.
Related papers
- Active inference and deep generative modeling for cognitive ultrasound [20.383444113659476]
We show that US imaging systems can be recast as information-seeking agents that engage in reciprocal interactions with their anatomical environment.
Such agents autonomously adapt their transmit-receive sequences to fully personalize imaging and actively maximize information gain in-situ.
We then equip systems with a mechanism to actively reduce uncertainty and maximize diagnostic value across a sequence of experiments.
arXiv Detail & Related papers (2024-10-17T08:09:14Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in
Laparoscopic and Robotic Surgery [50.3022015601057]
We propose a predictive neural network that is capable of understanding and predicting critical interactive aspects of surgical workflow from intra-abdominal video.
We verify our approach on established surgical datasets and applications, including the detection and prediction of action triplets.
Our results demonstrate the superiority of our approach compared to unstructured alternatives.
arXiv Detail & Related papers (2024-02-03T00:58:05Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Adaptive Multi-Agent Deep Reinforcement Learning for Timely Healthcare Interventions [17.405080523382235]
We propose a novel AI-driven patient monitoring framework using multi-agent deep reinforcement learning (DRL)
Our approach deploys multiple learning agents, each dedicated to monitoring a specific physiological feature, such as heart rate, respiration, and temperature.
We evaluate the performance of the proposed multi-agent DRL framework using real-world physiological and motion data from two datasets.
arXiv Detail & Related papers (2023-09-20T00:42:08Z) - More Than Meets the Eye: Analyzing Anesthesiologists' Visual Attention
in the Operating Room Using Deep Learning Models [0.0]
Currently, most studies employ wearable eye-tracking technologies to analyze anesthesiologists' visual patterns.
By utilizing a novel eye-tracking method in the form of deep learning models that process monitor-mounted webcams, we collected continuous behavioral data.
We distinguished between baseline VA distribution during uneventful periods to patterns associated with active phases or during critical, unanticipated incidents.
arXiv Detail & Related papers (2023-08-10T11:12:04Z) - Deep denoising autoencoder-based non-invasive blood flow detection for
arteriovenous fistula [10.030431512848239]
We propose an approach based on deep denoising autoencoders (DAEs) that perform dimensionality reduction and reconstruction tasks.
Our results demonstrate that the latent representation generated by the DAE surpasses expectations with an accuracy of 0.93.
The incorporation of noise-mixing and the utilization of a noise-to-clean scheme effectively enhance the discriminative capabilities of the latent representation.
arXiv Detail & Related papers (2023-06-12T04:46:01Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Explainable Artificial Intelligence in Retinal Imaging for the detection
of Systemic Diseases [0.0]
This study aims to evaluate an explainable staged grading process without using deep Convolutional Neural Networks (CNNs) directly.
We have proposed a clinician-in-the-loop assisted intelligent workflow that performs a retinal vascular assessment on the fundus images.
The semiautomatic methodology aims to have a federated approach to AI in healthcare applications with more inputs and interpretations from clinicians.
arXiv Detail & Related papers (2022-12-14T07:00:31Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.