論文の概要: Subjective $\textit{Isms}$? On the Danger of Conflating Hate and Offence
in Abusive Language Detection
- arxiv url: http://arxiv.org/abs/2403.02268v1
- Date: Mon, 4 Mar 2024 17:56:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 17:47:37.395207
- Title: Subjective $\textit{Isms}$? On the Danger of Conflating Hate and Offence
in Abusive Language Detection
- Title(参考訳): 主観的$\textit{isms}$?
虐待言語検出における憎しみと犯罪の合併の危険性について
- Authors: Amanda Cercas Curry, Gavin Abercrombie, Zeerak Talat
- Abstract要約: 我々はヘイトスピーチの発見を無効にすることができると論じる。
我々は、将来の研究が理論上あることを求め、その概念や犯罪から憎悪を遠ざけている。
- 参考スコア(独自算出の注目度): 5.351398116822836
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Natural language processing research has begun to embrace the notion of
annotator subjectivity, motivated by variations in labelling. This approach
understands each annotator's view as valid, which can be highly suitable for
tasks that embed subjectivity, e.g., sentiment analysis. However, this
construction may be inappropriate for tasks such as hate speech detection, as
it affords equal validity to all positions on e.g., sexism or racism. We argue
that the conflation of hate and offence can invalidate findings on hate speech,
and call for future work to be situated in theory, disentangling hate from its
orthogonal concept, offence.
- Abstract(参考訳): 自然言語処理の研究は、ラベル付けのバリエーションによって動機づけられる注釈主観性の概念を取り入れ始めた。
このアプローチは、各アノテータの見解を有効であると理解し、例えば感情分析のような主観性を組み込んだタスクに非常に適している。
しかし、この構成はヘイトスピーチ検出のようなタスクには不適切であり、例えば性差別や人種差別といった全てのポジションに等しく妥当性がある。
我々は、憎しみと憎しみの融合はヘイトスピーチに関する発見を無効にし、将来の仕事は理論上存在し、憎しみをその直交的な概念、悪行から切り離すべきだと主張する。
関連論文リスト
- An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
既存の手法の大きな制限は、ヘイトスピーチ検出がコンテキストの問題である点である。
近年,大規模言語モデル (LLM) はいくつかの自然言語処理において最先端の性能を示した。
本研究は, ヘイトスピーチの文脈を効果的に把握する上で, 巧妙な推論プロンプトが有効であることを明らかにする。
論文 参考訳(メタデータ) (2024-01-07T00:39:33Z) - HCDIR: End-to-end Hate Context Detection, and Intensity Reduction model
for online comments [2.162419921663162]
ソーシャルメディア投稿において,Hate Context Detection と Hate Intensity Reduction のための新しいエンドツーエンドモデル HCDIR を提案する。
我々は、ヘイトフルコメントを検出するために、いくつかの事前訓練された言語モデルを微調整し、最も優れたヘイトフルコメント検出モデルを確認した。
論文 参考訳(メタデータ) (2023-12-20T17:05:46Z) - Towards Legally Enforceable Hate Speech Detection for Public Forums [29.225955299645978]
本研究では,ヘイトスピーチ検出のための新たな視点と課題を紹介する。
法の専門家による11の可能な定義に違反したデータセットを使用します。
ヘイトスピーチの明確で法的に強制可能なインスタンスを特定することの難しさを踏まえ、専門家が作成したサンプルと自動マイニングされたチャレンジセットでデータセットを拡張する。
論文 参考訳(メタデータ) (2023-05-23T04:34:41Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Leveraging World Knowledge in Implicit Hate Speech Detection [5.5536024561229205]
テキスト中のエンティティの言及に関する現実的な知識は、モデルがヘイトスピーチをよりよく検出するのに役立ちます。
また,実世界の知識がヘイトスピーチ検出に価値を与えない事例についても論じる。
論文 参考訳(メタデータ) (2022-12-28T21:23:55Z) - Beyond Plain Toxic: Detection of Inappropriate Statements on Flammable
Topics for the Russian Language [76.58220021791955]
本稿では,不合理性という二項的概念と,センシティブなトピックの多項的概念に基づいてラベル付けされた2つのテキストコレクションについて述べる。
不適切な概念を客観するために、クラウドソーシングではデータ駆動方式で定義する。
論文 参考訳(メタデータ) (2022-03-04T15:59:06Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
本研究では,アノテータのアイデンティティ(誰)と信念(なぜ)が有害な言語アノテーションに与える影響について検討する。
我々は、アンチブラック言語、アフリカ系アメリカ人の英語方言、俗語という3つの特徴を持つポストを考察する。
以上の結果から,アノテータのアイデンティティと信念と毒性評価の相関が強く示唆された。
論文 参考訳(メタデータ) (2021-11-15T18:58:20Z) - Textless Speech Emotion Conversion using Decomposed and Discrete
Representations [49.55101900501656]
我々は、音声を、コンテンツ単位、F0、話者、感情からなる離散的、非絡み合いの学習表現に分解する。
まず、内容単位を対象の感情に翻訳し、その単位に基づいて韻律的特徴を予測することによって、音声内容を変更する。
最後に、予測された表現をニューラルボコーダに入力して音声波形を生成する。
論文 参考訳(メタデータ) (2021-11-14T18:16:42Z) - Latent Hatred: A Benchmark for Understanding Implicit Hate Speech [22.420275418616242]
この研究は、暗黙のヘイトスピーチの理論的に正当化された分類法と、各メッセージにきめ細かいラベルを付けたベンチマークコーパスを導入している。
本稿では、同時代のベースラインを用いて、暗黙のヘイトスピーチを検出し、説明するためにデータセットを体系的に分析する。
論文 参考訳(メタデータ) (2021-09-11T16:52:56Z) - Towards generalisable hate speech detection: a review on obstacles and
solutions [6.531659195805749]
本稿では,既存のヘイトスピーチ検出モデルの一般化について概説する。
主な障害に対処する既存の試みを要約し、ヘイトスピーチ検出における一般化を改善するための今後の研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-02-17T17:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。