Model Lakes
- URL: http://arxiv.org/abs/2403.02327v1
- Date: Mon, 4 Mar 2024 18:55:50 GMT
- Title: Model Lakes
- Authors: Koyena Pal, David Bau, Ren\'ee J. Miller
- Abstract summary: Given a set of deep learning models, it can be hard to find models appropriate to a task.
Inspired from research on data lakes, we introduce and define the concept of model lakes.
We discuss fundamental research challenges in the management of large models.
- Score: 22.717104096113637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a set of deep learning models, it can be hard to find models
appropriate to a task, understand the models, and characterize how models are
different one from another. Currently, practitioners rely on manually-written
documentation to understand and choose models. However, not all models have
complete and reliable documentation. As the number of machine learning models
increases, this issue of finding, differentiating, and understanding models is
becoming more crucial. Inspired from research on data lakes, we introduce and
define the concept of model lakes. We discuss fundamental research challenges
in the management of large models. And we discuss what principled data
management techniques can be brought to bear on the study of large model
management.
Related papers
- What Matters for Model Merging at Scale? [94.26607564817786]
Model merging aims to combine multiple expert models into a more capable single model.
Previous studies have primarily focused on merging a few small models.
This study systematically evaluates the utility of model merging at scale.
arXiv Detail & Related papers (2024-10-04T17:17:19Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - Large Language Model Pruning [0.0]
We suggest a model pruning technique specifically focused on LLMs.
The proposed methodology emphasizes the explainability of deep learning models.
We also explore the difference between pruning on large-scale models vs. pruning on small-scale models.
arXiv Detail & Related papers (2024-05-24T18:22:15Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Foundation models in brief: A historical, socio-technical focus [2.5991265608180396]
Foundation models can be disruptive for future AI development by scaling up deep learning.
Models achieve state-of-the-art performance on a variety of tasks in domains such as natural language processing and computer vision.
arXiv Detail & Related papers (2022-12-17T22:11:33Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
We measure the impact of three different adaptation methods on the generalization and accuracy of models.
Experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers.
We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
arXiv Detail & Related papers (2021-09-07T03:13:06Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
We present a two-phase framework for finding helpful models for a current application.
In the upload phase, when a model is uploading into the pool, we construct a reduced kernel mean embedding (RKME) as a specification for the model.
Then in the deployment phase, the relatedness of the current task and pre-trained models will be measured based on the value of the RKME specification.
arXiv Detail & Related papers (2020-01-20T15:15:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.