論文の概要: Toward Neuromic Computing: Neurons as Autoencoders
- arxiv url: http://arxiv.org/abs/2403.02331v1
- Date: Mon, 4 Mar 2024 18:58:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 17:40:40.919589
- Title: Toward Neuromic Computing: Neurons as Autoencoders
- Title(参考訳): ニューロミクスコンピューティングに向けて: ニューロンをオートエンコーダとして
- Authors: Larry Bull
- Abstract要約: この手紙は、神経のバックプロパゲーションが樹状突起処理を用いて、個々のニューロンがオートエンコーディングを行うことを可能にするという考えを提示する。
非常に単純な接続モデルと人工ニューラルネットワークモデルを用いて、フィードフォワードネットワークの隠蔽層における各ニューロンの自己エンコーディングのインターリーブ効果について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The computational capabilities of dendrites have become increasingly clear.
This letter presents the idea that neural backpropagation is using dendritic
processing to enable individual neurons to perform autoencoding. Using a very
simple connection weight search heuristic and artificial neural network model,
the effects of interleaving autoencoding for each neuron in a hidden layer of a
feedforward network are explored. This is contrasted to the standard layered
approach to autoencoding. It is shown that such individualised processing is
not detrimental and can improve network learning.
- Abstract(参考訳): デンドライトの計算能力はますます明確になっている。
このレターは、神経バックプロパゲーションが樹状突起処理を使用して個々のニューロンが自動的にエンコードできるという考えを示している。
超単純な接続重み探索ヒューリスティックおよび人工ニューラルネットワークモデルを用いて、フィードフォワードネットワークの隠れ層における各ニューロンに対する相互結合型自己符号化の効果を探索する。
これは、オートエンコーディングの標準層アプローチとは対照的である。
このような個別化処理は有害ではなく、ネットワーク学習を改善することができる。
関連論文リスト
- Residual Random Neural Networks [0.0]
ランダムな重みを持つ単層フィードフォワードニューラルネットワークは、ニューラルネットワークの文献の中で繰り返されるモチーフである。
隠れたニューロンの数がデータサンプルの次元と等しくない場合でも,優れた分類結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-25T22:00:11Z) - Verified Neural Compressed Sensing [58.98637799432153]
精度の高い計算タスクのために、初めて(私たちの知識を最大限に活用するために)証明可能なニューラルネットワークを開発します。
極小問題次元(最大50)では、線形および双項線形測定からスパースベクトルを確実に回復するニューラルネットワークを訓練できることを示す。
ネットワークの複雑さは問題の難易度に適応できることを示し、従来の圧縮センシング手法が証明不可能な問題を解く。
論文 参考訳(メタデータ) (2024-05-07T12:20:12Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
使用中のニューラルネットワークの主要なタイプであるニューラルネットワークについて研究する。
最適化されたニューラルネットワークの幅が無限大になる傾向があるため、トレーニングセットの予測分散はゼロになる。
論文 参考訳(メタデータ) (2022-01-30T04:52:31Z) - Training Deep Spiking Auto-encoders without Bursting or Dying Neurons
through Regularization [9.34612743192798]
スパイクニューラルネットワークは、計算神経科学における次世代の脳モデルに対する有望なアプローチである。
膜電位に基づくバックプロパゲーションを用いたエンドツーエンド学習を、スパイクする畳み込みオートエンコーダに適用する。
膜電位とスパイク出力に正規化を適用することで、死と破裂の両方のニューロンをうまく回避できることを示す。
論文 参考訳(メタデータ) (2021-09-22T21:27:40Z) - Neural Rule Ensembles: Encoding Sparse Feature Interactions into Neural
Networks [3.7277730514654555]
決定木を用いて、関連する特徴とその相互作用をキャプチャし、抽出した関係をニューラルネットワークにエンコードするマッピングを定義する。
同時に、機能選択により、アートツリーベースのアプローチの状況と比較して、コンパクトな表現の学習が可能になる。
論文 参考訳(メタデータ) (2020-02-11T11:22:20Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。