論文の概要: Enhancing Transferability and Consistency in Cross-Domain Recommendations via Supervised Disentanglement
- arxiv url: http://arxiv.org/abs/2507.17112v1
- Date: Wed, 23 Jul 2025 01:29:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.814652
- Title: Enhancing Transferability and Consistency in Cross-Domain Recommendations via Supervised Disentanglement
- Title(参考訳): 教師付きディスタングルによるクロスドメイン勧告の伝達性と整合性の向上
- Authors: Yuhan Wang, Qing Xie, Zhifeng Bao, Mengzi Tang, Lin Li, Yongjian Liu,
- Abstract要約: クロスドメインレコメンデーションは、ドメイン間で知識を伝達することで、データの疎さを軽減することを目的としている。
分散表現学習は、複雑なユーザの好みをモデル化するための効果的なソリューションを提供する。
本稿では,GNN を拡張したエンコーダデコーダフレームワーク DGCDR を提案する。
- 参考スコア(独自算出の注目度): 13.553355329509243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-domain recommendation (CDR) aims to alleviate the data sparsity by transferring knowledge across domains. Disentangled representation learning provides an effective solution to model complex user preferences by separating intra-domain features (domain-shared and domain-specific features), thereby enhancing robustness and interpretability. However, disentanglement-based CDR methods employing generative modeling or GNNs with contrastive objectives face two key challenges: (i) pre-separation strategies decouple features before extracting collaborative signals, disrupting intra-domain interactions and introducing noise; (ii) unsupervised disentanglement objectives lack explicit task-specific guidance, resulting in limited consistency and suboptimal alignment. To address these challenges, we propose DGCDR, a GNN-enhanced encoder-decoder framework. To handle challenge (i), DGCDR first applies GNN to extract high-order collaborative signals, providing enriched representations as a robust foundation for disentanglement. The encoder then dynamically disentangles features into domain-shared and -specific spaces, preserving collaborative information during the separation process. To handle challenge (ii), the decoder introduces an anchor-based supervision that leverages hierarchical feature relationships to enhance intra-domain consistency and cross-domain alignment. Extensive experiments on real-world datasets demonstrate that DGCDR achieves state-of-the-art performance, with improvements of up to 11.59% across key metrics. Qualitative analyses further validate its superior disentanglement quality and transferability. Our source code and datasets are available on GitHub for further comparison.
- Abstract(参考訳): クロスドメインレコメンデーション(CDR)は、ドメイン間で知識を伝達することで、データの疎さを軽減することを目的としている。
ドメイン内特徴(ドメイン共有およびドメイン固有特徴)を分離することにより、複雑なユーザ嗜好をモデル化するための効果的なソリューションを提供する。
しかし、ジェネレーティブ・モデリング(GNN)と対照的な目的を持つGNNを用いた歪曲型CDR法は、以下の2つの課題に直面している。
一 協調信号を抽出し、ドメイン内相互作用を妨害し、騒音を発生させる前に、特徴を分離する前分離戦略
(II) 教師なしの絡み合い目標には明確なタスク固有のガイダンスが欠如しており, 整合性や準最適アライメントが制限されている。
これらの課題に対処するため、GNNで拡張されたエンコーダデコーダフレームワークであるDGCDRを提案する。
挑戦に対処する
(i) DGCDR は GNN を用いて高次協調信号の抽出を行う。
その後、エンコーダは動的に機能をドメイン共有空間と-特定空間に切り離し、分離プロセス中に協調的な情報を保存する。
挑戦に対処する
(ii)、デコーダは、階層的特徴関係を利用してドメイン内の一貫性とドメイン間の整合性を高めるアンカーベースの監視を導入する。
実世界のデータセットに関する大規模な実験は、DGCDRが最先端のパフォーマンスを達成し、主要なメトリクスで最大11.59%の改善を実現していることを示している。
定性的解析は、その優れた不絡合品質と伝達性をさらに検証する。
ソースコードとデータセットは、さらなる比較のためにGitHubで入手可能です。
関連論文リスト
- Exploring Generalized Gait Recognition: Reducing Redundancy and Noise within Indoor and Outdoor Datasets [24.242460774158463]
一般化歩行認識は、多様な領域にわたる堅牢なパフォーマンスを実現することを目的としている。
混合データセットトレーニングは一般化を高めるために広く利用されている。
クロスドメイン歩行認識を体系的に改善する統合フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-21T06:46:09Z) - Let Synthetic Data Shine: Domain Reassembly and Soft-Fusion for Single Domain Generalization [68.41367635546183]
単一ドメインの一般化は、単一のソースからのデータを使用して、さまざまなシナリオで一貫したパフォーマンスでモデルをトレーニングすることを目的としている。
モデル一般化を改善するために合成データを活用した学習フレームワークDRSFを提案する。
論文 参考訳(メタデータ) (2025-03-17T18:08:03Z) - LLM-RecG: A Semantic Bias-Aware Framework for Zero-Shot Sequential Recommendation [5.512301280728178]
ゼロショットクロスドメインシーケンシャルレコメンデーション(ZCDSR)は、追加のトレーニングや微調整なしで、目に見えないドメインでの予測を可能にする。
大規模言語モデル(LLM)の最近の進歩は、ドメイン間の知識伝達を容易にすることで、ZCDSRを大幅に強化している。
本稿では,アイテムレベルとシーケンシャルレベルの両方において,ドメイン間のアライメントを改善するセマンティックバイアス対応フレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-31T15:43:21Z) - Decomposition-based Unsupervised Domain Adaptation for Remote Sensing Image Semantic Segmentation [30.606689882397223]
非教師なし領域適応(UDA)技術は、地球科学のセマンティックセグメンテーションに不可欠である。
高レベルの特徴空間におけるドメインアライメントに焦点を当てた既存のUDA手法の多くは、局所的な空間的詳細とグローバルな文脈的意味論を同時に維持するのに苦労している。
ドメイン不変表現学習を導くための新しい分解手法を提案する。
論文 参考訳(メタデータ) (2024-04-06T07:13:49Z) - FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling [15.159012729198619]
我々は,ハイパーグラフ信号デカップリングを用いた新しいクロスドメイン勧告フレームワークであるFedHCDRを提案する。
本研究では,ハイパーグラフ信号デカップリング(HSD)と呼ばれる手法を導入し,ユーザ特徴をドメイン排他的・ドメイン共有的特徴に分離する。
3つの実世界のシナリオで実施された大規模な実験は、FedHCDRが既存のベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2024-03-05T03:40:39Z) - Towards Lightweight Cross-domain Sequential Recommendation via External
Attention-enhanced Graph Convolution Network [7.1102362215550725]
クロスドメインシークエンシャルレコメンデーション(CSR)は、複数のドメインからのインタラクションをモデル化することで、重複したユーザの振る舞いパターンの進化を描いている。
上記の課題,すなわちLEA-GCNを解決するために,軽量な外部注意強化GCNベースのフレームワークを導入する。
フレームワークの構造をさらに緩和し、ユーザ固有のシーケンシャルパターンを集約するために、新しい二重チャネル外部注意(EA)コンポーネントを考案する。
論文 参考訳(メタデータ) (2023-02-07T03:06:29Z) - DDGHM: Dual Dynamic Graph with Hybrid Metric Training for Cross-Domain
Sequential Recommendation [15.366783212837515]
Sequential Recommendation (SR) は、ユーザがアイテム間を移動する方法をモデル化することによって、ユーザの行動の進化パターンを特徴付ける。
この問題を解決するため、我々はクロスドメインシーケンスレコメンデーション(CDSR)に焦点を当てる。
本稿では,CDSR問題のための新しいフレームワークであるDDGHMを提案する。
論文 参考訳(メタデータ) (2022-09-21T07:53:06Z) - Unsupervised Domain Adaptation via Style-Aware Self-intermediate Domain [52.783709712318405]
非教師なしドメイン適応(UDA)は、ラベル豊富なソースドメインから関連するがラベルのないターゲットドメインに知識を伝達する、かなりの注目を集めている。
本研究では,大規模なドメインギャップと伝達知識を橋渡しし,クラス非ネイティブ情報の損失を軽減するために,SAFF(style-aware feature fusion)法を提案する。
論文 参考訳(メタデータ) (2022-09-05T10:06:03Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
我々は、FGRR(Fearground-aware Graph-based Reasoning)というドメインDのための新しい汎用フレームワークを提案する。
FGRRはグラフ構造を検出パイプラインに組み込んで、ドメイン内およびドメイン間フォアグラウンドオブジェクト関係を明示的にモデル化する。
実験の結果、提案したFGRRは4つのDomainDベンチマークの最先端よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-06-06T05:12:48Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。