DeconfuseTrack:Dealing with Confusion for Multi-Object Tracking
- URL: http://arxiv.org/abs/2403.02767v1
- Date: Tue, 5 Mar 2024 08:35:09 GMT
- Title: DeconfuseTrack:Dealing with Confusion for Multi-Object Tracking
- Authors: Cheng Huang, Shoudong Han, Mengyu He, Wenbo Zheng, Yuhao Wei
- Abstract summary: We propose a simple, versatile, and highly interpretable data association approach called Decomposed Data Association (DDA)
DDA decomposes the traditional association problem into multiple sub-problems using a series of non-learning-based modules.
We also introduce Occlusion-aware Non-Maximum Suppression (ONMS) to retain more occluded detections.
- Score: 11.739356936959622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate data association is crucial in reducing confusion, such as ID
switches and assignment errors, in multi-object tracking (MOT). However,
existing advanced methods often overlook the diversity among trajectories and
the ambiguity and conflicts present in motion and appearance cues, leading to
confusion among detections, trajectories, and associations when performing
simple global data association. To address this issue, we propose a simple,
versatile, and highly interpretable data association approach called Decomposed
Data Association (DDA). DDA decomposes the traditional association problem into
multiple sub-problems using a series of non-learning-based modules and
selectively addresses the confusion in each sub-problem by incorporating
targeted exploitation of new cues. Additionally, we introduce Occlusion-aware
Non-Maximum Suppression (ONMS) to retain more occluded detections, thereby
increasing opportunities for association with trajectories and indirectly
reducing the confusion caused by missed detections. Finally, based on DDA and
ONMS, we design a powerful multi-object tracker named DeconfuseTrack,
specifically focused on resolving confusion in MOT. Extensive experiments
conducted on the MOT17 and MOT20 datasets demonstrate that our proposed DDA and
ONMS significantly enhance the performance of several popular trackers.
Moreover, DeconfuseTrack achieves state-of-the-art performance on the MOT17 and
MOT20 test sets, significantly outperforms the baseline tracker ByteTrack in
metrics such as HOTA, IDF1, AssA. This validates that our tracking design
effectively reduces confusion caused by simple global association.
Related papers
- DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
We propose DNMOT, an end-to-end trainable DeNoising Transformer for multiple object tracking.
Specifically, we augment the trajectory with noises during training and make our model learn the denoising process in an encoder-decoder architecture.
We conduct extensive experiments on the MOT17, MOT20, and DanceTrack datasets, and the experimental results show that our method outperforms previous state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2023-09-09T04:40:01Z) - Occlusion-Aware Detection and Re-ID Calibrated Network for Multi-Object
Tracking [38.36872739816151]
Occlusion-Aware Attention (OAA) module in the detector highlights the object features while suppressing the occluded background regions.
OAA can serve as a modulator that enhances the detector for some potentially occluded objects.
We design a Re-ID embedding matching block based on the optimal transport problem.
arXiv Detail & Related papers (2023-08-30T06:56:53Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - Unsupervised Visible-Infrared Person ReID by Collaborative Learning with Neighbor-Guided Label Refinement [53.044703127757295]
Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) aims at learning modality-invariant features from unlabeled cross-modality dataset.
We propose a Dual Optimal Transport Label Assignment (DOTLA) framework to simultaneously assign the generated labels from one modality to its counterpart modality.
The proposed DOTLA mechanism formulates a mutual reinforcement and efficient solution to cross-modality data association, which could effectively reduce the side-effects of some insufficient and noisy label associations.
arXiv Detail & Related papers (2023-05-22T04:40:30Z) - Transformer-based assignment decision network for multiple object
tracking [0.0]
We introduce Transformer-based Assignment Decision Network (TADN) that tackles data association without the need of explicit optimization during inference.
Our proposed approach outperforms the state-of-the-art in most evaluation metrics despite its simple nature as a tracker.
arXiv Detail & Related papers (2022-08-06T19:47:32Z) - Adaptive Affinity for Associations in Multi-Target Multi-Camera Tracking [53.668757725179056]
We propose a simple yet effective approach to adapt affinity estimations to corresponding matching scopes in MTMCT.
Instead of trying to deal with all appearance changes, we tailor the affinity metric to specialize in ones that might emerge during data associations.
Minimizing the mismatch, the adaptive affinity module brings significant improvements over global re-ID distance.
arXiv Detail & Related papers (2021-12-14T18:59:11Z) - RelationTrack: Relation-aware Multiple Object Tracking with Decoupled
Representation [3.356734463419838]
Existing online multiple object tracking (MOT) algorithms often consist of two subtasks, detection and re-identification (ReID)
In order to enhance the inference speed and reduce the complexity, current methods commonly integrate these double subtasks into a unified framework.
We devise a module named Global Context Disentangling (GCD) that decouples the learned representation into detection-specific and ReID-specific embeddings.
To resolve this restriction, we develop a module, referred to as Guided Transformer (GTE), by combining the powerful reasoning ability of Transformer encoder and deformable attention.
arXiv Detail & Related papers (2021-05-10T13:00:40Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Rethinking the competition between detection and ReID in Multi-Object
Tracking [44.59367033562385]
One-shot models which jointly learn detection and identification embeddings, have drawn great attention in multi-object tracking (MOT)
In this paper, we propose a novel reciprocal network (REN) with a self-relation and cross-relation design to better learn task-dependent representations.
We also introduce a scale-aware attention network (SAAN) that prevents semantic level misalignment to improve the association capability of ID embeddings.
arXiv Detail & Related papers (2020-10-23T02:44:59Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem.
Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.
arXiv Detail & Related papers (2020-03-10T00:04:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.