論文の概要: SAFFIRA: a Framework for Assessing the Reliability of
Systolic-Array-Based DNN Accelerators
- arxiv url: http://arxiv.org/abs/2403.02946v1
- Date: Tue, 5 Mar 2024 13:17:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 14:49:16.269934
- Title: SAFFIRA: a Framework for Assessing the Reliability of
Systolic-Array-Based DNN Accelerators
- Title(参考訳): SAFFIRA:Systolic-ArrayベースのDNNアクセラレータの信頼性を評価するフレームワーク
- Authors: Mahdi Taheri, Masoud Daneshtalab, Jaan Raik, Maksim Jenihhin,
Salvatore Pappalardo, Paul Jimenez, Bastien Deveautour, and Alberto Bosio
- Abstract要約: 本稿では,シストリックアレイをベースとしたディープニューラルネットワーク(DNN)アクセラレータに適した,階層型ソフトウェアベースのハードウェア対応フォールトインジェクション戦略を提案する。
- 参考スコア(独自算出の注目度): 0.4391603054571586
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Systolic array has emerged as a prominent architecture for Deep Neural
Network (DNN) hardware accelerators, providing high-throughput and low-latency
performance essential for deploying DNNs across diverse applications. However,
when used in safety-critical applications, reliability assessment is mandatory
to guarantee the correct behavior of DNN accelerators. While fault injection
stands out as a well-established practical and robust method for reliability
assessment, it is still a very time-consuming process. This paper addresses the
time efficiency issue by introducing a novel hierarchical software-based
hardware-aware fault injection strategy tailored for systolic array-based DNN
accelerators.
- Abstract(参考訳): シストリクスアレイはディープニューラルネットワーク(DNN)ハードウェアアクセラレーターの顕著なアーキテクチャとして登場し、多様なアプリケーションにまたがるDNNのデプロイに必要な高スループットと低レイテンシのパフォーマンスを提供する。
しかしながら、安全クリティカルなアプリケーションで使用する場合、信頼性評価はDNNアクセラレータの正しい動作を保証するために必須である。
フォールトインジェクションは信頼性評価のための十分に確立された実用的で堅牢な手法として際立っているが、それでも非常に時間がかかるプロセスである。
本稿では,シストリックアレイ型DNN加速器に適した,新しい階層型ソフトウェアベースのハードウェア対応故障注入手法を導入することで,時間効率の問題に対処する。
関連論文リスト
- Exploration of Activation Fault Reliability in Quantized Systolic
Array-Based DNN Accelerators [0.8796261172196743]
本稿では,量子化がモデル精度,アクティベーション障害の信頼性,ハードウェア効率に与える影響を総合的に評価するための包括的方法論を提案する。
さまざまな量子化対応技術、フォールトインジェクション、ハードウェア実装を適用可能な、完全に自動化されたフレームワークが導入された。
確立されたベンチマーク実験は、信頼性、ハードウェア性能、ネットワーク精度に対する分析フローと量子化の深い影響を実証している。
論文 参考訳(メタデータ) (2024-01-17T12:55:17Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
ディープニューラルネットワーク(DNN)は多くのシナリオで異常な結果を示した強力なツールです。
しかし、それらの複雑な設計と透明性の欠如は、現実世界のアプリケーションに適用する際の安全性上の懸念を提起する。
DNNの形式的検証(FV)は、安全面の証明可能な保証を提供する貴重なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-10T13:51:25Z) - Special Session: Approximation and Fault Resiliency of DNN Accelerators [0.9126382223122612]
本稿では,Deep Neural Networkアクセラレータの近似とフォールトレジリエンスについて検討する。
本稿では,DNNに障害注入を行わずにハードウェアのエラーをエミュレートするために近似(AxC)演算回路を提案する。
また,ネットワーク上での断層伝播とマスキングによる耐故障性の微粒化解析も提案する。
論文 参考訳(メタデータ) (2023-05-31T19:27:45Z) - APPRAISER: DNN Fault Resilience Analysis Employing Approximation Errors [1.1091582432763736]
安全クリティカルなアプリケーションにおけるディープニューラルネットワーク(DNN)は、新たな信頼性の懸念を引き起こす。
エミュレーションによる断層注入の最先端手法は, 時間, 設計, 制御・複雑度の問題を引き起こす。
APPRAISERは、非伝統的な目的に関数近似を適用し、近似計算誤差を用いる。
論文 参考訳(メタデータ) (2023-05-31T10:53:46Z) - DeepAxe: A Framework for Exploration of Approximation and Reliability
Trade-offs in DNN Accelerators [0.9556128246747769]
安全クリティカルなアプリケーションにおけるディープニューラルネットワーク(DNN)の役割は拡大している。
DNNは計算能力の面で大きく成長している。
これは、DNNアクセラレーターの信頼性を向上させる必要性を高める。
論文 参考訳(メタデータ) (2023-03-14T20:42:38Z) - DeepVigor: Vulnerability Value Ranges and Factors for DNNs' Reliability
Assessment [1.189955933770711]
Deep Neural Networks(DNN)とそのアクセラレータは、安全クリティカルなアプリケーションに頻繁にデプロイされている。
本稿では,DeepVigorと呼ばれる,高精度,微粒化,メトリック指向,アクセラレーションに依存しない新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-13T08:55:10Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time
Mobile Acceleration [71.80326738527734]
本稿では,汎用的,きめ細かな構造化プルーニング手法とコンパイラの最適化を提案する。
提案手法は,より微細な構造化プルーニング手法とともに,最先端のDNN最適化フレームワークよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-22T23:53:14Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
スパイキングニューラルネットワーク(SNN)を用いた生時間パルスで直接物体認識問題に対処する手法を提案する。
各種データセットを用いて評価した結果,提案手法は最先端の手法に匹敵する性能を示しながら,優れた時間効率を実現している。
論文 参考訳(メタデータ) (2020-01-24T22:58:55Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
粗粒構造の内部に新しい次元、きめ細かなプルーニングパターンを導入し、これまで知られていなかった設計空間の点を明らかにした。
きめ細かいプルーニングパターンによって高い精度が実現されているため、コンパイラを使ってハードウェア効率を向上し、保証することがユニークな洞察である。
論文 参考訳(メタデータ) (2020-01-01T04:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。