Simulation of Chemical Reactions on a Quantum Computer
- URL: http://arxiv.org/abs/2403.03052v2
- Date: Tue, 23 Apr 2024 07:13:08 GMT
- Title: Simulation of Chemical Reactions on a Quantum Computer
- Authors: Sumit Suresh Kale, Sabre Kais,
- Abstract summary: We develop and apply a quantum algorithm for the calculation of scattering matrix elements.
We successfully apply our quantum algorithm to calculate scattering matrix elements for 1D semi-infinite square well potential and on the co-linear hydrogen exchange reaction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Studying chemical reactions, particularly in the gas phase, relies heavily on computing scattering matrix elements. These elements are essential for characterizing molecular reactions and accurately determining reaction probabilities. However, the intricate nature of quantum interactions poses challenges, necessitating the use of advanced mathematical models and computational approaches to tackle the inherent complexities. In this study, we develop and apply a quantum algorithm for the calculation of scattering matrix elements. In our approach, we employ the time-dependent method based on the M\"oller operator formulation where the S-matrix element between the respective reactant and product channels is determined through the time correlation function of the reactant and product M\"oller wavepackets. We successfully apply our quantum algorithm to calculate scattering matrix elements for 1D semi-infinite square well potential and on the co-linear hydrogen exchange reaction. As we navigate the complexities of quantum interactions, this quantum algorithm is general and emerges as a promising avenue, shedding light on new possibilities for simulating chemical reactions on quantum computers.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Simulation of a Diels-Alder Reaction on a Quantum Computer [0.0]
This study explores the potential applications of quantum algorithms and hardware in investigating chemical reactions.
Our goal is to calculate the activation barrier of a reaction between ethylene and cyclopentadiene forming a transition state.
We conduct simulations on IBM quantum hardware using up to 8 qubits, and compute accurate activation barriers.
arXiv Detail & Related papers (2024-03-12T22:29:07Z) - Non-adiabatic quantum dynamics with fermionic subspace-expansion
algorithms on quantum computers [0.0]
We introduce a novel computational framework for excited-states molecular quantum dynamics simulations.
We calculate the required excited-state transition properties with different flavors of the quantum subspace expansion and quantum equation-of-motion algorithms.
We show that only methods that can capture both weak and strong electron correlation effects can properly describe the non-adiabatic effects that tune the reactive event.
arXiv Detail & Related papers (2024-02-23T15:09:19Z) - Quantum Eigenvector Continuation for Chemistry Applications [57.70351255180495]
We show that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states.
In all cases, we show that the PES can be captured using relatively few basis states.
arXiv Detail & Related papers (2023-04-28T19:22:58Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Simulation of chemical reaction dynamics based on quantum computing [1.9441762996158096]
We develop the ab initio molecular dynamics based on quantum computing to simulate reaction dynamics.
We use this approach to calculate Hessian matrix and evaluate resources.
Our results suggest that it is reliable to characterize the molecular structure, property, and reactivity.
arXiv Detail & Related papers (2023-03-15T12:49:10Z) - Quantum Computation of Reactions on Surfaces Using Local Embedding [1.696959441235195]
We develop and compare two local embedding methods for the systematic determination of active spaces.
To reduce the quantum resources required for the simulation of the selected active spaces using quantum algorithms, we introduce a technique for exact and automated circuit simplification.
Our study identifies reactions of molecules on surfaces, in conjunction with the proposed algorithmic workflow, as a promising research direction in the field of quantum computing applied to materials science.
arXiv Detail & Related papers (2022-03-14T22:41:10Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.