論文の概要: Machine Learning Assisted Adjustment Boosts Efficiency of Exact Inference in Randomized Controlled Trials
- arxiv url: http://arxiv.org/abs/2403.03058v2
- Date: Mon, 22 Jul 2024 17:57:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 02:30:51.675388
- Title: Machine Learning Assisted Adjustment Boosts Efficiency of Exact Inference in Randomized Controlled Trials
- Title(参考訳): ランダム化試験における厳密な推論の効率を高める機械学習支援調整
- Authors: Han Yu, Alan D. Hutson, Xiaoyi Ma,
- Abstract要約: 提案手法は,I型誤差を頑健に制御し,ランダム化制御試験(RCT)の統計的効率を高めることができることを示す。
その応用は、第III相臨床試験のような、RCTの必要なサンプルサイズとコストを著しく削減する可能性がある。
- 参考スコア(独自算出の注目度): 12.682443719767763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum's framework of exact tests in randomized experiments with covariate adjustments. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the statistical efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real-world example. The simplicity, flexibility, and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.
- Abstract(参考訳): 本研究では、ランダム化制御試験のための機械学習に基づく調整を補助する新しい推論手順を提案する。
この手法は、共変量調整を用いたランダム化実験において、正確なテストを行うRosenbaumの枠組みの下で開発された。
広範囲にわたるシミュレーション実験により,提案手法はI型エラーを頑健に制御し,ランダム化比較試験(RCT)の統計的効率を高めることができることを示した。
この利点は実例でさらに証明された。
提案手法の単純さ,柔軟性,堅牢性により,特に共変量間の非線形な関連性や相互作用が期待される場合,RCTの規則推論手法として競合する候補となる。
その応用は、第III相臨床試験のような、RCTの必要なサンプルサイズとコストを著しく削減する可能性がある。
関連論文リスト
- Adaptive Experimentation When You Can't Experiment [55.86593195947978]
本稿では,Emphcon founded the pure exploration transductive linear bandit (textttCPET-LB) problem。
オンラインサービスは、ユーザーを特定の治療にインセンティブを与える、適切にランダム化された励ましを利用することができる。
論文 参考訳(メタデータ) (2024-06-15T20:54:48Z) - Adaptive Instrument Design for Indirect Experiments [48.815194906471405]
RCTとは異なり、間接的な実験は条件付き機器変数を利用して治療効果を推定する。
本稿では,データ収集ポリシーを適応的に設計することで,間接実験におけるサンプル効率の向上に向けた最初のステップについて述べる。
我々の主な貢献は、影響関数を利用して最適なデータ収集ポリシーを探索する実用的な計算手順である。
論文 参考訳(メタデータ) (2023-12-05T02:38:04Z) - A Weighted Prognostic Covariate Adjustment Method for Efficient and
Powerful Treatment Effect Inferences in Randomized Controlled Trials [0.28087862620958753]
ランダム化制御試験(RCT)の重要な課題は、効率的な推定器と治療効果の強力な試験を得られる統計手法を特定することである。
過去の制御データに基づいて生成AIアルゴリズムを訓練することにより、RDT参加者のためのデジタルツインジェネレータ(DTG)を構築することができる。
DTGは、RTT参加者の潜在的制御結果の確率分布を生成する。
論文 参考訳(メタデータ) (2023-09-25T16:14:13Z) - Task-specific experimental design for treatment effect estimation [59.879567967089145]
因果推論の標準は大規模ランダム化試験(RCT)である。
近年の研究では、RCTのよりサンプル効率の良い代替案が提案されているが、これらは因果効果を求める下流の応用には適用できない。
実験的な設計のためのタスク固有のアプローチを開発し、特定の下流アプリケーションにカスタマイズされたサンプリング戦略を導出する。
論文 参考訳(メタデータ) (2023-06-08T18:10:37Z) - A Causal Inference Framework for Leveraging External Controls in Hybrid
Trials [1.7942265700058988]
ランダム化トライアルのデータを外部ソースの制御データで拡張した環境での因果推論に関わる課題を考察する。
提案手法は, 推定器, 評価効率境界, および効率的な2次ロバスト推定のためのアプローチである。
筋萎縮性筋萎縮症の運動機能に対するrisdisplamの効果について検討した。
論文 参考訳(メタデータ) (2023-05-15T19:15:32Z) - Improved Policy Evaluation for Randomized Trials of Algorithmic Resource
Allocation [54.72195809248172]
提案する新しい概念を応用した新しい推定器を提案する。
我々は,このような推定器が,サンプル手段に基づく一般的な推定器よりも精度が高いことを理論的に証明した。
論文 参考訳(メタデータ) (2023-02-06T05:17:22Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Synthetic Design: An Optimization Approach to Experimental Design with
Synthetic Controls [5.3063411515511065]
本研究では,前処理結果データを用いた実験結果の最適設計について検討する。
平均処理効果は、処理単位の重み付き平均結果と制御単位との差として推定される。
重みと合わせて処理単位の集合を選択する方法をいくつか提案する。
論文 参考訳(メタデータ) (2021-12-01T05:05:26Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
規範的応用のための予測機械学習モデルをトレーニングするための新しい手法を提案する。
このアプローチは、標準的なトレーニング検証テストスキームの検証ステップを微調整することに基づいている。
合成データを用いたいくつかの実験は、決定論的モデルと実モデルの両方において処方料コストを削減できる有望な結果を示した。
論文 参考訳(メタデータ) (2021-10-22T15:03:20Z) - AdaPT-GMM: Powerful and robust covariate-assisted multiple testing [0.7614628596146599]
偽発見率(FDR)制御を用いた複数検定の実証的ベイズ法を提案する。
本手法は,アダプティブp値しきい値法(AdaPT)をマスク方式の一般化により洗練する。
我々は、AdaPT-GMMと呼ばれる新しい手法が一貫して高出力を実現することを、広範囲にわたるシミュレーションと実データ例で示す。
論文 参考訳(メタデータ) (2021-06-30T05:06:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。