論文の概要: Demonstrating efficient and robust bosonic state reconstruction via optimized excitation counting
- arxiv url: http://arxiv.org/abs/2403.03080v3
- Date: Mon, 25 Mar 2024 09:13:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 01:15:57.628144
- Title: Demonstrating efficient and robust bosonic state reconstruction via optimized excitation counting
- Title(参考訳): 最適化励起計数による高効率で頑健なボゾン状態復元
- Authors: Tanjung Krisnanda, Clara Yun Fontaine, Adrian Copetudo, Pengtao Song, Kai Xiang Lee, Ni-Ni Huang, Fernando Valadares, Timothy C. H. Liew, Yvonne Y. Gao,
- Abstract要約: 励起数サンプリング(ORENS)に基づく効率的でロバストな再構成手法を提案する。
我々の研究は、ボソニックモードを用いた実用的な量子情報処理のための重要かつ価値のあるプリミティブを提供する。
- 参考スコア(独自算出の注目度): 33.12402484053305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum state reconstruction is an essential element in quantum information processing. However, efficient and reliable reconstruction of non-trivial quantum states in the presence of hardware imperfections can be challenging. This task is particularly demanding for high-dimensional states encoded in continuous-variable (CV) systems, as many error-prone measurements are needed to cover the relevant degrees of freedom of the system in phase space. In this work, we introduce an efficient and robust technique for optimized reconstruction based on excitation number sampling (ORENS). We use a standard bosonic circuit quantum electrodynamics (cQED) setup to experimentally demonstrate the robustness of ORENS and show that it outperforms the existing cQED reconstruction techniques such as Wigner and Husimi Q tomography. Our investigation highlights that ORENS is naturally free of parasitic system dynamics and resilient to decoherence effects in the hardware. Finally, ORENS relies only on the ability to accurately measure the excitation number of the state, making it a versatile and accessible tool for a wide range of CV platforms and readily scalable to multimode systems. Thus, our work provides a crucial and valuable primitive for practical quantum information processing using bosonic modes.
- Abstract(参考訳): 量子状態再構成は、量子情報処理において重要な要素である。
しかし、ハードウェア不完全性の存在下での非自明な量子状態の効率的かつ信頼性の高い再構成は困難である。
この課題は連続可変(CV)システムで符号化された高次元状態に対して特に要求される。
そこで本研究では,励起数サンプリング(ORENS)に基づく効率的でロバストな再構成手法を提案する。
我々は、標準的なボソニック回路量子電磁力学(cQED)を用いて、ORENSのロバスト性を実験的に証明し、Wigner や Husimi Q などの既存のcQED再構成技術よりも優れていることを示す。
我々の研究は、ORENSが自然に寄生系力学を必要とせず、ハードウェアのデコヒーレンス効果に耐性があることを強調している。
最後に、ORENSは状態の励起数を正確に測定する能力にのみ依存しており、幅広いCVプラットフォーム向けの汎用的でアクセスしやすいツールであり、マルチモードシステムに容易に拡張できる。
このように、本研究はボソニックモードを用いた実用的な量子情報処理のための重要かつ価値のあるプリミティブを提供する。
関連論文リスト
- Experimental demonstration of enhanced quantum tomography via quantum reservoir processing [0.8672788660913944]
ボーソニック回路の量子力学プラットフォーム上での連続可変状態再構成のための量子貯水池処理手法を実験的に実証した。
この方法で学習したマップは,複数のテスト状態に対して高い再現性を実現し,システムの理想化されたモデルに基づいて計算されたマップよりも大幅に性能を向上することを示す。
論文 参考訳(メタデータ) (2024-12-15T02:02:43Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum tomography of Rydberg atom graphs by configurable ancillas [1.0965065178451106]
本稿では, 連続的に変化する相互作用が, 関心システムの量子状態再構成に十分なトモグラフィ的に, 独立したベース計測を生成できるアンシラを提案する。
N$-body $W$状態のRydberg原子配列に対して実験を行い、提案手法の信頼性の高い完全量子状態再構成を実証した。
論文 参考訳(メタデータ) (2022-11-15T06:38:01Z) - Reconstructing complex states of a 20-qubit quantum simulator [0.6646556786265893]
本稿では, 量子状態の多角化を効果的に再現する手法を示す。
我々は,ニューラルネットワークの量子状態表現に基づく手法と比較して,状態再構成の品質と収束の高速化を観察する。
本研究は,多体量子系のクエンチダイナミクスによって生成される複素状態の効率的な実験的評価への道を開くものである。
論文 参考訳(メタデータ) (2022-08-09T15:52:20Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Scalable photonic platform for real-time quantum reservoir computing [0.0]
量子貯留層計算(Quantum Reservoir Computing)は、量子システムの情報処理能力を利用して、非自明な時間的タスクを解決する。
最近の進歩は、拡大ヒルベルト空間を利用するQRCの可能性を示している。
クローズドループを循環する同一光パルスの形で貯留層の物理的アンサンブルに基づくリアルタイムQRCに適したフォトニックプラットフォームを提案する。
論文 参考訳(メタデータ) (2022-07-28T11:44:44Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Adaptive Quantum State Tomography with Active Learning [0.0]
本稿では,能動学習を用いた量子状態トモグラフィーの効率的なスキームを提案し,実装する。
本手法は, 1次元のXXZモデルと運動的に制約されたスピン鎖の基底状態だけでなく, 様々なエンタングルメントの程度で異なるマルチキュービット状態の再構成を行う。
提案手法は,量子多体システムにおける物理的洞察を得るとともに,量子デバイスをベンチマークし,特徴付けるためにも有効である。
論文 参考訳(メタデータ) (2022-03-29T16:23:10Z) - Quantum verification and estimation with few copies [63.669642197519934]
大規模絡み合ったシステムの検証と推定は、信頼性の高い量子情報処理にそのようなシステムを用いる際の大きな課題の1つである。
本稿では,資源の一定数(サンプリング複雑性)に着目し,任意の次元のシステムに適していることを示す。
具体的には、量子状態トモグラフィー(quantum state tomography)の概念とともに、エンタングルメント検出のために少なくとも1つのコピーだけを必要とする確率的フレームワークをレビューする。
論文 参考訳(メタデータ) (2021-09-08T18:20:07Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Fast and robust quantum state tomography from few basis measurements [65.36803384844723]
本稿では、上記の全てのリソースを精度に悪影響を及ぼすことなく最適化するオンライントモグラフィーアルゴリズムを提案する。
このプロトコルは、状態コピー、測定設定、メモリのランクと寸法で証明可能なパフォーマンスを初めて提供する。
量子コンピュータ上でアルゴリズムを実行し、量子状態トモグラフィーのための量子スピードアップを提供することにより、さらなる改善が可能となる。
論文 参考訳(メタデータ) (2020-09-17T11:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。