論文の概要: Leveraging Federated Learning for Automatic Detection of Clopidogrel
Treatment Failures
- arxiv url: http://arxiv.org/abs/2403.03368v1
- Date: Tue, 5 Mar 2024 23:31:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 16:32:17.513159
- Title: Leveraging Federated Learning for Automatic Detection of Clopidogrel
Treatment Failures
- Title(参考訳): フェデレート学習によるclopidogrel治療障害の自動検出
- Authors: Samuel Kim and Min Sang Kim
- Abstract要約: 本研究では,クロピドッグレル処理障害検出のためのフェデレーション学習戦略を活用する。
地理的中心に基づいてデータを分割し,フェデレート学習の性能を評価した。
クロピドッグレル治療障害検出におけるフェデレート学習の可能性について検討した。
- 参考スコア(独自算出の注目度): 0.8132630541462695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The effectiveness of clopidogrel, a widely used antiplatelet medication,
varies significantly among individuals, necessitating the development of
precise predictive models to optimize patient care. In this study, we leverage
federated learning strategies to address clopidogrel treatment failure
detection. Our research harnesses the collaborative power of multiple
healthcare institutions, allowing them to jointly train machine learning models
while safeguarding sensitive patient data. Utilizing the UK Biobank dataset,
which encompasses a vast and diverse population, we partitioned the data based
on geographic centers and evaluated the performance of federated learning. Our
results show that while centralized training achieves higher Area Under the
Curve (AUC) values and faster convergence, federated learning approaches can
substantially narrow this performance gap. Our findings underscore the
potential of federated learning in addressing clopidogrel treatment failure
detection, offering a promising avenue for enhancing patient care through
personalized treatment strategies while respecting data privacy. This study
contributes to the growing body of research on federated learning in healthcare
and lays the groundwork for secure and privacy-preserving predictive models for
various medical conditions.
- Abstract(参考訳): 抗血小板薬であるclopidogrelの有効性は個人によって大きく異なり、患者のケアを最適化するための正確な予測モデルの開発が必要となる。
本研究では,clopidogrel 治療障害検出にフェデレート学習戦略を応用した。
本研究は、複数の医療機関の協力力を活用し、患者データを保護しながら、機械学習モデルを共同で訓練することを可能にする。
広域かつ多様な人口を包含する英国バイオバンクデータセットを用いて,地理的センタに基づくデータを分割し,連合学習の性能評価を行った。
この結果から,集中学習がAUC(Area Under the Curve)のより高い値とより高速な収束を実現する一方で,フェデレーション学習アプローチは,この性能ギャップを大幅に狭めることができることがわかった。
以上の知見は,clopidogrel治療障害検出における連合学習の可能性を強調し,データプライバシを尊重しながら,パーソナライズされた治療戦略を通じて患者ケアを強化する有望な手段を提供する。
本研究は, 医療におけるフェデレートラーニング研究の進展に寄与し, 各種医療状況に対する安全かつプライバシ保護予測モデルの基礎となる。
関連論文リスト
- Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
分散トレーニングは、大規模な医用画像データセットの処理を容易にし、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:07:19Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Revolutionizing Disease Diagnosis: A Microservices-Based Architecture
for Privacy-Preserving and Efficient IoT Data Analytics Using Federated
Learning [0.0]
深層学習に基づく疾患診断の応用は、様々な疾患の段階での正確な診断に不可欠である。
処理リソースをデバイスに近づけることで、分散コンピューティングパラダイムは、病気の診断に革命をもたらす可能性がある。
本研究では、プライバシとパフォーマンス要件を満たすために、IoTデータ分析システムに対するフェデレーションベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-27T06:31:43Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Pruning the Way to Reliable Policies: A Multi-Objective Deep Q-Learning
Approach to Critical Care [68.8204255655161]
我々は、より信頼性の高いクリティカルケアポリシーを得ることができる深いQ-ラーニングアプローチを導入する。
まず、利用可能なすべての報酬に基づいてアクションセットを抽出し、次に、スパース主報酬に基づいて最終モデルを訓練し、制限されたアクションセットで達成する。
論文 参考訳(メタデータ) (2023-06-13T18:02:57Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
医療分野では、患者と臨床データの均一性を生かして、多施設共同研究がより一般化可能な発見をもたらすことがしばしばある。
最近のプライバシー規制は、データの共有を妨げ、その結果、診断と予後をサポートする機械学習ベースのソリューションを考案する。
ローカルノードの機能を統合する分散分散手法を提案し、プライバシを維持しながら複数のデータセットをまたいで一般化可能なモデルを提供する。
論文 参考訳(メタデータ) (2022-06-20T23:49:38Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - Distributed Learning Approaches for Automated Chest X-Ray Diagnosis [0.0]
医療機関のコンソーシアムが特定の疾患を特定するために機械学習モデルをトレーニングする必要がある場合、プライバシー問題に対処する戦略に焦点を当てる。
特に,本分析では,クライアントデータにおけるデータ分散の違いが,機関間のデータ交換頻度に与える影響について検討した。
論文 参考訳(メタデータ) (2021-10-04T14:22:29Z) - Federated Learning for Multi-Center Imaging Diagnostics: A Study in
Cardiovascular Disease [0.8687046723936027]
心臓血管磁気共鳴(CMR)のモダリティに関する第1回フェデレート学習研究について紹介する。
我々は、肥大型心筋症(HCM)の診断に焦点を当て、M&MデータセットとACDCデータセットのサブセットから派生した4つのセンターを使用する。
データのサイズが小さい(4つのセンターから180の被験者を抽出)にもかかわらず、プライバシ保護のためのフェデレーション学習が有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-07-07T08:54:08Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。