論文の概要: FedCL-Ensemble Learning: A Framework of Federated Continual Learning with Ensemble Transfer Learning Enhanced for Alzheimer's MRI Classifications while Preserving Privacy
- arxiv url: http://arxiv.org/abs/2411.12756v1
- Date: Fri, 15 Nov 2024 13:49:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:13:44.357770
- Title: FedCL-Ensemble Learning: A Framework of Federated Continual Learning with Ensemble Transfer Learning Enhanced for Alzheimer's MRI Classifications while Preserving Privacy
- Title(参考訳): FedCL-Ensemble Learning: プライバシを保ちつつ、アルツハイマー病のMRI分類に強化されたアンサンブルトランスファーラーニングによるフェデレーション型連続学習フレームワーク
- Authors: Rishit Kapoor, Jesher Joshua, Muralidharan Vijayarangan, Natarajan B,
- Abstract要約: 本研究は,ResNet,ImageNet,VNetなどの伝達学習モデルを用いて,医用画像データから高次特徴を抽出する。
提案モデルは, 患者データを共有することなく, フェデレーション学習を用いて構築された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This research work introduces a novel approach to the classification of Alzheimer's disease by using the advanced deep learning techniques combined with secure data processing methods. This research work primary uses transfer learning models such as ResNet, ImageNet, and VNet to extract high-level features from medical image data. Thereafter, these pre-trained models were fine-tuned for Alzheimer's related subtle patterns such that the model is capable of robust feature extraction over varying data sources. Further, the federated learning approaches were incorporated to tackle a few other challenges related to classification, aimed to provide better prediction performance and protect data privacy. The proposed model was built using federated learning without sharing sensitive patient data. This way, the decentralized model benefits from the large and diversified dataset that it is trained upon while ensuring confidentiality. The cipher-based encryption mechanism is added that allows us to secure the transportation of data and further ensure the privacy and integrity of patient information throughout training and classification. The results of the experiments not only help to improve the accuracy of the classification of Alzheimer's but at the same time provides a framework for secure and collaborative analysis of health care data.
- Abstract(参考訳): 本研究は、高度深層学習技術とセキュアなデータ処理手法を組み合わせることで、アルツハイマー病の分類に新しいアプローチを導入する。
本研究は,ResNet,ImageNet,VNetなどの伝達学習モデルを用いて,医用画像データから高次特徴を抽出する。
その後、これらの事前訓練されたモデルは、様々なデータソース上で頑健な特徴抽出が可能なように、アルツハイマーの関連する微妙なパターンのために微調整された。
さらに、フェデレートされた学習アプローチは、より良い予測性能を提供し、データのプライバシを保護することを目的として、分類に関する他のいくつかの課題に取り組むために組み込まれた。
提案モデルは, 患者データを共有することなく, フェデレーション学習を用いて構築された。
このようにして、分散化されたモデルは、秘密性を確保しながらトレーニングされる大規模で多様化したデータセットの恩恵を受ける。
暗号ベースの暗号化機構が追加され、データの転送をセキュアにし、トレーニングや分類を通じて患者の情報のプライバシーと整合性を確保することができる。
実験の結果は、アルツハイマー病の分類の精度を向上させるだけでなく、医療データの安全かつ協調的な分析のための枠組みを提供する。
関連論文リスト
- Prediction and Detection of Terminal Diseases Using Internet of Medical Things: A Review [4.4389631374821255]
AI駆動モデルでは、心臓疾患、慢性腎臓病(CKD)、アルツハイマー病、肺がんの予測において98%以上の精度が達成されている。
IoMTデータは巨大で異種であり、患者のプライバシを保護するための相互運用性とセキュリティを確保するための複雑さが増している。
今後の研究は、データ品質と相互運用性を改善するために、データの標準化と高度な前処理技術に焦点を当てるべきである。
論文 参考訳(メタデータ) (2024-09-22T15:02:33Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
分散トレーニングは、大規模な医用画像データセットの処理を容易にし、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:07:19Z) - Leveraging Federated Learning for Automatic Detection of Clopidogrel
Treatment Failures [0.8132630541462695]
本研究では,クロピドッグレル処理障害検出のためのフェデレーション学習戦略を活用する。
地理的中心に基づいてデータを分割し,フェデレート学習の性能を評価した。
クロピドッグレル治療障害検出におけるフェデレート学習の可能性について検討した。
論文 参考訳(メタデータ) (2024-03-05T23:31:07Z) - An advanced data fabric architecture leveraging homomorphic encryption
and federated learning [10.779491433438144]
本稿では,分散データファブリックアーキテクチャにおけるフェデレーション学習と部分同型暗号を用いた医用画像解析のためのセキュアなアプローチを提案する。
本研究は下垂体腫瘍分類のケーススタディを通じて, 本手法の有効性を実証し, 高い精度を達成した。
論文 参考訳(メタデータ) (2024-02-15T08:50:36Z) - A Distributed Privacy Preserving Model for the Detection of Alzheimer's Disease [0.0]
本稿では,分散データからトレーニングできるHIPAA準拠のフレームワークを提案する。
次に,アルツハイマー病(AD)検出のための多モード垂直フェデレーションモデルを提案する。
ここで提案されたVFLアーキテクチャは、多様な医療データソースをまたいだ協調学習を可能にする、新しい分散アーキテクチャを提供する。
論文 参考訳(メタデータ) (2023-12-15T22:09:04Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。