論文の概要: D4C glove-train: solving the RPM and Bongard-logo problem by distributing and Circumscribing concepts
- arxiv url: http://arxiv.org/abs/2403.03452v3
- Date: Sun, 17 Mar 2024 13:47:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 01:31:10.125604
- Title: D4C glove-train: solving the RPM and Bongard-logo problem by distributing and Circumscribing concepts
- Title(参考訳): D4Cグローブトレイン:概念の分散と循環によるRPMとBongard-logo問題の解法
- Authors: Ruizhuo Song, Beiming Yuan,
- Abstract要約: D2Cアプローチは、Ravenのプログレッシブ行列とボンガード・ローゴ問題において、概念境界を再定義する。
D3C法は画像表現の分布を推定し、シンクホーン距離を測定することにより推論精度を著しく向上させる。
D3C-cos変種は分布距離を制約することでRPM問題の効率的かつ正確な解を提供する。
Lico-NetはD3CとD3C-cosを組み合わせたネットワークであり、問題解決と解釈性の両方において最先端の性能を達成する。
- 参考スコア(独自算出の注目度): 1.7955614278088239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper achieves significant progress in the field of abstract reasoning, particularly in addressing Raven's Progressive Matrices (RPM) and Bongard-Logo problems. We propose the D2C approach, which redefines conceptual boundaries in these domains and bridges the gap between high-level concepts and their low-dimensional representations. Based on this, we further introduce the D3C method that handles Bongard-Logo problems and significantly improves reasoning accuracy by estimating the distribution of image representations and measuring their Sinkhorn distance. To enhance computational efficiency, we introduce the D3C-cos variant, which provides an efficient and accurate solution for RPM problems by constraining distribution distances. Additionally, we present Lico-Net, a network that combines D3C and D3C-cos to achieve state-of-the-art performance in both problem-solving and interpretability. Finally, we extend our approach to D4C, employing adversarial strategies to further refine conceptual boundaries and demonstrate notable improvements for both RPM and Bongard-Logo problems. Overall, our contributions offer a new perspective and practical solutions to the field of abstract reasoning.
- Abstract(参考訳): 本稿では,抽象的推論の分野において,特にRaven's Progressive Matrices(RPM)問題とBongard-Logo問題に対処する上で,大きな進歩をもたらす。
本稿では,これらの領域における概念境界を再定義し,高次概念と低次元表現とのギャップを埋めるD2C手法を提案する。
そこで本研究では,Bongard-Logo問題に対処し,画像表現の分布を推定し,シンクホーン距離を測定することにより推論精度を大幅に向上するD3C手法を提案する。
計算効率を向上させるために,分布距離を制約することでRPM問題に対する効率的かつ正確な解を提供するD3C-cos変法を導入する。
さらに,D3CとD3Cを併用したネットワークLico-Netを提案する。
最後に、我々のアプローチをD4Cに拡張し、さらに概念境界を洗練させ、RPMとBongard-Logoの問題に対する顕著な改善を示す。
全体として、私たちの貢献は抽象的推論の分野に対する新しい視点と実践的な解決策を提供します。
関連論文リスト
- A Simple and Generalist Approach for Panoptic Segmentation [57.94892855772925]
汎用的なビジョンモデルは、様々なビジョンタスクのための1つの同じアーキテクチャを目指している。
このような共有アーキテクチャは魅力的に思えるかもしれないが、ジェネラリストモデルは、その好奇心に満ちたモデルよりも優れている傾向にある。
一般モデルの望ましい性質を損なうことなく、2つの重要なコントリビューションを導入することでこの問題に対処する。
論文 参考訳(メタデータ) (2024-08-29T13:02:12Z) - Semantic Segmentation for Real-World and Synthetic Vehicle's Forward-Facing Camera Images [0.8562182926816566]
これは、車両の前向きカメラからの実世界の画像と合成画像の両方におけるセマンティックセグメンテーション問題の解決策である。
我々は、さまざまな屋外状況の様々な領域でよく機能するロバストモデルの構築に集中する。
本稿では,意味的セグメンテーション問題における領域適応のための実世界のデータと合成データの併用の有効性について検討する。
論文 参考訳(メタデータ) (2024-07-07T17:28:45Z) - Funny-Valen-Tine: Planning Solution Distribution Enhances Machine Abstract Reasoning Ability [1.7955614278088239]
本稿では,確率的ハイライトモデルに基づく新しいベースラインモデルであるValenを紹介する。
Valen は RPM と Bongard-Logo の問題を解決し、汎用的なソリューションを提供している。
論文 参考訳(メタデータ) (2024-07-02T22:04:20Z) - Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt [37.98336090671441]
概念 textbfDrift textbfDetection antextbfD textbfAdaptation (D3A)
まずドリフトの概念を検知し、次に急激な適応の検出の後、現在のモデルをドリフトされた概念に積極的に適応する。
これは、トレイン-テストのパフォーマンスの不整合に寄与する重要な要因であるデータ分散ギャップを軽減するのに役立ちます。
論文 参考訳(メタデータ) (2024-03-22T04:44:43Z) - Triple-CFN: Restructuring Concept Spaces for Enhancing Abstract Reasoning Process [1.7955614278088239]
画像から概念と特徴を別々に抽出する新しいフレームワークであるCross-Feature Network (CFN)を紹介した。
抽出した概念と特徴をCFN内に組み込んだ期待最大化プロセスを統合することで,顕著な結果を得た。
また、RPM問題に適した概念空間を明示的に構築した、Triple-CFNの先進バージョンであるMeta Triple-CFNについても紹介する。
論文 参考訳(メタデータ) (2024-03-05T18:29:17Z) - 360 Layout Estimation via Orthogonal Planes Disentanglement and Multi-view Geometric Consistency Perception [56.84921040837699]
既存のパノラマ配置推定ソリューションは、垂直圧縮されたシーケンスから部屋の境界を復元し、不正確な結果をもたらす傾向にある。
そこで本稿では,直交平面不整合ネットワーク(DOPNet)を提案し,あいまいな意味論を識別する。
また,水平深度と比表現に適した教師なし適応手法を提案する。
本手法は,単分子配置推定と多視点レイアウト推定の両タスクにおいて,他のSoTAモデルよりも優れる。
論文 参考訳(メタデータ) (2023-12-26T12:16:03Z) - BEV-DG: Cross-Modal Learning under Bird's-Eye View for Domain
Generalization of 3D Semantic Segmentation [59.99683295806698]
クロスモーダルなUnsupervised Domain Adaptation (UDA)は、新しいドメインにおけるアノテーションの欠如を克服するために、2D-3Dデータの相補性を活用することを目的としている。
本稿では,BEV-DGと呼ばれる3次元セマンティックセグメンテーションの領域一般化(DG)に対する鳥眼図に基づくクロスモーダル学習を提案する。
論文 参考訳(メタデータ) (2023-08-12T11:09:17Z) - Crowd Counting via Perspective-Guided Fractional-Dilation Convolution [75.36662947203192]
本稿では,PFDNetと呼ばれる新しい畳み込みニューラルネットワークを用いた群集カウント手法を提案する。
連続スケールの変動をモデル化することにより、提案したPFDNetは、異なる空間位置に対応するための適切な分数拡張カーネルを選択することができる。
これは、個々の代表スケールのみを考慮した最先端技術の柔軟性を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-08T07:57:00Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Taxonomy of Dual Block-Coordinate Ascent Methods for Discrete Energy
Minimization [96.1052289276254]
離散的グラフィカルモデルにおける最大姿勢推定問題と、二重ブロック座標法に基づく解法について考察する。
既存のすべてのソルバをひとつのフレームワークにマッピングし、設計原則をより深く理解できるようにします。
論文 参考訳(メタデータ) (2020-04-16T15:49:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。