Diffusion on language model encodings for protein sequence generation
- URL: http://arxiv.org/abs/2403.03726v2
- Date: Wed, 05 Feb 2025 08:26:23 GMT
- Title: Diffusion on language model encodings for protein sequence generation
- Authors: Viacheslav Meshchaninov, Pavel Strashnov, Andrey Shevtsov, Fedor Nikolaev, Nikita Ivanisenko, Olga Kardymon, Dmitry Vetrov,
- Abstract summary: We present DiMA, a latent diffusion framework that operates on protein language model representations.
Our framework consistently produces novel, high-quality and diverse protein sequences.
It supports conditional generation tasks including protein family-generation, motif scaffolding and infilling, and fold-specific sequence design.
- Score: 0.5182791771937247
- License:
- Abstract: Protein sequence design has seen significant advances through discrete diffusion and autoregressive approaches, yet the potential of continuous diffusion remains underexplored. Here, we present DiMA, a latent diffusion framework that operates on protein language model representations. Through systematic exploration of architectural choices and diffusion components, we develop a robust methodology that generalizes across multiple protein encoders ranging from 8M to 3B parameters. We demonstrate that our framework achieves consistently high performance across sequence-only (ESM-2, ESMc), dual-decodable (CHEAP), and multimodal (SaProt) representations using the same architecture and training approach. We extensively evaluate existing methods alongside DiMA using multiple metrics across two protein modalities, covering quality, diversity, novelty, and distribution matching of generated proteins. DiMA consistently produces novel, high-quality and diverse protein sequences and achieves strong results compared to baselines such as autoregressive, discrete diffusion and flow matching language models. The model demonstrates versatile functionality, supporting conditional generation tasks including protein family-generation, motif scaffolding and infilling, and fold-specific sequence design. This work provides a universal continuous diffusion framework for protein sequence generation, offering both architectural insights and practical applicability across various protein design scenarios.
Related papers
- OneProt: Towards Multi-Modal Protein Foundation Models [5.440531199006399]
We introduce OneProt, a multi-modal AI for proteins that integrates structural, sequence, alignment, and binding site data.
It surpasses state-of-the-art methods in various downstream tasks, including metal ion binding classification, gene-ontology annotation, and enzyme function prediction.
This work expands multi-modal capabilities in protein models, paving the way for applications in drug discovery, biocatalytic reaction planning, and protein engineering.
arXiv Detail & Related papers (2024-11-07T16:54:54Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.
Deep generative models have shown promise in generating protein conformations as a more efficient alternative.
We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - DPLM-2: A Multimodal Diffusion Protein Language Model [75.98083311705182]
We introduce DPLM-2, a multimodal protein foundation model that extends discrete diffusion protein language model (DPLM) to accommodate both sequences and structures.
DPLM-2 learns the joint distribution of sequence and structure, as well as their marginals and conditionals.
Empirical evaluation shows that DPLM-2 can simultaneously generate highly compatible amino acid sequences and their corresponding 3D structures.
arXiv Detail & Related papers (2024-10-17T17:20:24Z) - Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
We introduce FoldFlow-2, a novel sequence-conditioned flow matching model for protein structure generation.
We train FoldFlow-2 at scale on a new dataset that is an order of magnitude larger than PDB datasets of prior works.
We empirically observe that FoldFlow-2 outperforms previous state-of-the-art protein structure-based generative models.
arXiv Detail & Related papers (2024-05-30T17:53:50Z) - Unified Generation, Reconstruction, and Representation: Generalized Diffusion with Adaptive Latent Encoding-Decoding [90.77521413857448]
Deep generative models are anchored in three core capabilities -- generating new instances, reconstructing inputs, and learning compact representations.
We introduce Generalized generative adversarial-Decoding Diffusion Probabilistic Models (EDDPMs)
EDDPMs generalize the Gaussian noising-denoising in standard diffusion by introducing parameterized encoding-decoding.
Experiments on text, proteins, and images demonstrate the flexibility to handle diverse data and tasks.
arXiv Detail & Related papers (2024-02-29T10:08:57Z) - Diffusion Language Models Are Versatile Protein Learners [75.98083311705182]
This paper introduces diffusion protein language model (DPLM), a versatile protein language model that demonstrates strong generative and predictive capabilities for protein sequences.
We first pre-train scalable DPLMs from evolutionary-scale protein sequences within a generative self-supervised discrete diffusion probabilistic framework.
After pre-training, DPLM exhibits the ability to generate structurally plausible, novel, and diverse protein sequences for unconditional generation.
arXiv Detail & Related papers (2024-02-28T18:57:56Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.