Evaluating the Elementary Multilingual Capabilities of Large Language Models with MultiQ
- URL: http://arxiv.org/abs/2403.03814v2
- Date: Thu, 18 Jul 2024 07:31:58 GMT
- Title: Evaluating the Elementary Multilingual Capabilities of Large Language Models with MultiQ
- Authors: Carolin Holtermann, Paul Röttger, Timm Dill, Anne Lauscher,
- Abstract summary: Large language models (LLMs) need to serve everyone, including a global majority of non-English speakers.
Recent research shows that, despite limits in their intended use, people prompt LLMs in many different languages.
We introduce MultiQ, a new silver standard benchmark for basic open-ended question answering with 27.4k test questions.
- Score: 16.637598165238934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) need to serve everyone, including a global majority of non-English speakers. However, most LLMs today, and open LLMs in particular, are often intended for use in just English (e.g. Llama2, Mistral) or a small handful of high-resource languages (e.g. Mixtral, Qwen). Recent research shows that, despite limits in their intended use, people prompt LLMs in many different languages. Therefore, in this paper, we investigate the basic multilingual capabilities of state-of-the-art open LLMs beyond their intended use. For this purpose, we introduce MultiQ, a new silver standard benchmark for basic open-ended question answering with 27.4k test questions across a typologically diverse set of 137 languages. With MultiQ, we evaluate language fidelity, i.e. whether models respond in the prompted language, and question answering accuracy. All LLMs we test respond faithfully and/or accurately for at least some languages beyond their intended use. Most models are more accurate when they respond faithfully. However, differences across models are large, and there is a long tail of languages where models are neither accurate nor faithful. We explore differences in tokenization as a potential explanation for our findings, identifying possible correlations that warrant further investigation.
Related papers
- Beneath the Surface of Consistency: Exploring Cross-lingual Knowledge Representation Sharing in LLMs [31.893686987768742]
Language models are inconsistent in their ability to answer the same factual question across languages.
We explore multilingual factual knowledge through two aspects: the model's ability to answer a query consistently across languages, and the ability to ''store'' answers in a shared representation for several languages.
arXiv Detail & Related papers (2024-08-20T08:38:30Z) - Multilingual Needle in a Haystack: Investigating Long-Context Behavior of Multilingual Large Language Models [22.859955360764275]
We introduce the MultiLingual Needle-in-a-Haystack (MLNeedle) test to assess a model's ability to retrieve relevant information.
We evaluate four state-of-the-art large language models on MLNeedle.
arXiv Detail & Related papers (2024-08-19T17:02:06Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.
We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.
We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
arXiv Detail & Related papers (2024-06-28T17:03:51Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - MLaKE: Multilingual Knowledge Editing Benchmark for Large Language Models [65.10456412127405]
MLaKE is a benchmark for the adaptability of knowledge editing methods across five languages.
MLaKE aggregates fact chains from Wikipedia across languages and generates questions in both free-form and multiple-choice.
We evaluate the multilingual knowledge editing generalization capabilities of existing methods on MLaKE.
arXiv Detail & Related papers (2024-04-07T15:23:28Z) - OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large
Language Models [59.54423478596468]
We introduce OMGEval, the first Open-source Multilingual Generative test set that can assess the capability of LLMs in different languages.
For each language, OMGEval provides 804 open-ended questions, covering a wide range of important capabilities of LLMs.
Specifically, the current version of OMGEval includes 5 languages (i.e., Zh, Ru, Fr, Es, Ar)
arXiv Detail & Related papers (2024-02-21T04:42:41Z) - How Proficient Are Large Language Models in Formal Languages? An In-Depth Insight for Knowledge Base Question Answering [52.86931192259096]
Knowledge Base Question Answering (KBQA) aims to answer natural language questions based on facts in knowledge bases.
Recent works leverage the capabilities of large language models (LLMs) for logical form generation to improve performance.
arXiv Detail & Related papers (2024-01-11T09:27:50Z) - On the Calibration of Multilingual Question Answering LLMs [57.296161186129545]
We benchmark the calibration of several multilingual Large Language Models (MLLMs) on a variety of Question Answering tasks.
We study different dimensions of calibration in in-distribution, out-of-distribution, and cross-lingual transfer settings.
For decoder-only LLMs such as LlaMa2, we additionally find that in-context learning improves confidence calibration on multilingual data.
arXiv Detail & Related papers (2023-11-15T03:29:02Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
Large Language Models (LLMs) have demonstrated exceptional natural language understanding abilities.
We propose a systematic way of qualifying the performance disparities of LLMs under multilingual settings.
The results show that GPT exhibits highly translating-like behaviour in multilingual settings.
arXiv Detail & Related papers (2023-05-24T02:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.