GUIDE: Guidance-based Incremental Learning with Diffusion Models
- URL: http://arxiv.org/abs/2403.03938v2
- Date: Fri, 31 May 2024 15:31:16 GMT
- Title: GUIDE: Guidance-based Incremental Learning with Diffusion Models
- Authors: Bartosz Cywiński, Kamil Deja, Tomasz Trzciński, Bartłomiej Twardowski, Łukasz Kuciński,
- Abstract summary: We introduce GUIDE, a novel continual learning approach that directs diffusion models to rehearse samples at risk of being forgotten.
Our experimental results show that GUIDE significantly reduces catastrophic forgetting, outperforming conventional random sampling approaches and surpassing recent state-of-the-art methods in continual learning with generative replay.
- Score: 3.046689922445082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce GUIDE, a novel continual learning approach that directs diffusion models to rehearse samples at risk of being forgotten. Existing generative strategies combat catastrophic forgetting by randomly sampling rehearsal examples from a generative model. Such an approach contradicts buffer-based approaches where sampling strategy plays an important role. We propose to bridge this gap by incorporating classifier guidance into the diffusion process to produce rehearsal examples specifically targeting information forgotten by a continuously trained model. This approach enables the generation of samples from preceding task distributions, which are more likely to be misclassified in the context of recently encountered classes. Our experimental results show that GUIDE significantly reduces catastrophic forgetting, outperforming conventional random sampling approaches and surpassing recent state-of-the-art methods in continual learning with generative replay.
Related papers
- Joint Diffusion models in Continual Learning [4.013156524547073]
We introduce JDCL - a new method for continual learning with generative rehearsal based on joint diffusion models.
Generative-replay-based continual learning methods try to mitigate this issue by retraining a model with a combination of new and rehearsal data sampled from a generative model.
We show that such shared parametrization, combined with the knowledge distillation technique allows for stable adaptation to new tasks without catastrophic forgetting.
arXiv Detail & Related papers (2024-11-12T22:35:44Z) - Learned Reference-based Diffusion Sampling for multi-modal distributions [2.1383136715042417]
We introduce Learned Reference-based Diffusion Sampler (LRDS), a methodology specifically designed to leverage prior knowledge on the location of the target modes.
LRDS proceeds in two steps by learning a reference diffusion model on samples located in high-density space regions.
We experimentally demonstrate that LRDS best exploits prior knowledge on the target distribution compared to competing algorithms on a variety of challenging distributions.
arXiv Detail & Related papers (2024-10-25T10:23:34Z) - Which Pretrain Samples to Rehearse when Finetuning Pretrained Models? [60.59376487151964]
Fine-tuning pretrained models on specific tasks is now the de facto approach for text and vision tasks.
A known pitfall of this approach is the forgetting of pretraining knowledge that happens during finetuning.
We propose a novel sampling scheme, mix-cd, that identifies and prioritizes samples that actually face forgetting.
arXiv Detail & Related papers (2024-02-12T22:32:12Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Touring sampling with pushforward maps [3.5897534810405403]
This paper takes a theoretical stance to review and organize many sampling approaches in the generative modeling setting.
It might prove useful to overcome some of the current challenges in sampling with diffusion models.
arXiv Detail & Related papers (2023-11-23T08:23:43Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
We propose an ensemble modeling approach for multimodal action recognition.
We independently train individual modality models using a variant of focal loss tailored to handle the long-tailed distribution of the MECCANO [21] dataset.
arXiv Detail & Related papers (2023-08-10T08:43:20Z) - Exploring Continual Learning of Diffusion Models [24.061072903897664]
We evaluate the continual learning (CL) properties of diffusion models.
We provide insights into the dynamics of forgetting, which exhibit diverse behavior across diffusion timesteps.
arXiv Detail & Related papers (2023-03-27T15:52:14Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
We conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDIALOG curated in our work.
Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference of response generation model.
arXiv Detail & Related papers (2023-03-02T06:33:48Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
We propose a noise-robust approach named Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency)
Specifically, we train the network in a contrastive learning manner. Predictions from two different views of each sample are used to estimate its "likelihood" of being clean or out-of-distribution.
arXiv Detail & Related papers (2021-03-24T07:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.