Symmetry indicator in non-Hermitian systems
- URL: http://arxiv.org/abs/2105.00677v2
- Date: Wed, 21 Jul 2021 00:17:46 GMT
- Title: Symmetry indicator in non-Hermitian systems
- Authors: Ken Shiozaki and Seishiro Ono
- Abstract summary: We study a theory of symmetry indicators for non-Hermitian systems.
We list symmetry indicator groups for non-Hermitian systems in the presence of space group symmetries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, topological phases in non-Hermitian systems have attracted much
attention because non-Hermiticity sometimes gives rise to unique phases with no
Hermitian counterparts. Non-Hermitian Bloch Hamiltonians can always be mapped
to doubled Hermitianized Hamiltonians with chiral symmetry, which enables us to
utilize the existing framework for Hermitian systems into the classification of
non-Hermitian topological phases. While this strategy succeeded in the
topological classification of non-Hermitian Bloch Hamiltonians in the presence
of internal symmetries, the generalization of symmetry indicators -- a way to
efficiently diagnose topological phases -- to non-Hermitian systems is still
elusive. In this work, we study a theory of symmetry indicators for
non-Hermitian systems. We define space group symmetries of non-Hermitian Bloch
Hamiltonians as ones of the doubled Hermitianized Hamiltonians. Consequently,
symmetry indicator groups for chiral symmetric Hermitian systems are equivalent
to those for non-Hermitian systems. Based on this equivalence, we list symmetry
indicator groups for non-Hermitian systems in the presence of space group
symmetries. We also discuss the physical implications of symmetry indicators
for some symmetry classes. Furthermore, explicit formulas of symmetry
indicators for spinful electronic systems are included in appendices.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Anomalous symmetry protected blockade of skin effect in one-dimensional non-Hermitian lattice systems [20.4728241808175]
We present a theorem which shows that the combined spatial reflection symmetry can be considered as a criterion in one-dimensional non-Hermitian systems.
Our results reveal a profound connection between the symmetry and the fate of NHSE.
arXiv Detail & Related papers (2024-07-29T07:57:59Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Dual Symmetry Classification of Non-Hermitian Systems and $\mathbb{Z}_2$ Point-Gap Topology of a Non-Unitary Quantum Walk [0.8739101659113157]
Non-Hermitian systems exhibit richer topological properties compared to their Hermitian counterparts.
Non-Hermitian systems can be classified in two ways; a non-Hermitian system can be classified using the symmetry relations for non-Hermitian Hamiltonians or time-evolution operator.
arXiv Detail & Related papers (2024-03-07T01:55:30Z) - Latent Space Symmetry Discovery [31.28537696897416]
We propose a novel generative model, Latent LieGAN, which can discover symmetries of nonlinear group actions.
We show that our model can express nonlinear symmetries under some conditions about the group action.
LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.
arXiv Detail & Related papers (2023-09-29T19:33:01Z) - Homotopy, Symmetry, and Non-Hermitian Band Topology [4.777212360753631]
We show that non-Hermitian bands exhibit intriguing exceptional points, spectral braids and crossings.
We reveal different Abelian and non-Abelian phases in $mathcalPT$-symmetric systems.
These results open the door for theoretical and experimental exploration of a rich variety of novel topological phenomena.
arXiv Detail & Related papers (2023-09-25T18:00:01Z) - Breaking and resurgence of symmetry in the non-Hermitian Su-Schrieffer-Heeger model in photonic waveguides [0.0]
In symmetry-protected topological systems, symmetries are responsible for protecting surface states.
By engineering losses that break the symmetry protecting a topological Hermitian phase, we show that a new genuinely non-Hermitian symmetry emerges.
We classify the systems in terms of the (non-Hermitian) symmetries that are present and calculate the corresponding topological invariants.
arXiv Detail & Related papers (2023-04-12T10:05:02Z) - Spontaneous symmetry emergence in a Hermitian system without symmetry [0.0]
We show that the system state can acquire symmetry, which is not inherent to the system Hamiltonian.
The emergence of symmetry manifests itself in a change of the system dynamics, which can be interpreted as a phase transition in a Hermitian system without symmetry.
arXiv Detail & Related papers (2022-09-26T08:11:10Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Pseudo-chirality: a manifestation of Noether's theorem in non-Hermitian
systems [0.0]
We reveal previously unidentified constants of motion in non-Hermitian systems with parity-time and chiral symmetries.
We discuss previously unidentified symmetries of this non-Hermitian topological system, and we reveal how its constant of motion due to pseudo-chirality can be used as an indicator of whether a pure chiral edge state is excited.
arXiv Detail & Related papers (2021-01-22T17:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.