論文の概要: Dual-path Frequency Discriminators for Few-shot Anomaly Detection
- arxiv url: http://arxiv.org/abs/2403.04151v4
- Date: Thu, 22 Aug 2024 14:19:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 19:35:21.511876
- Title: Dual-path Frequency Discriminators for Few-shot Anomaly Detection
- Title(参考訳): ファウショット異常検出のためのデュアルパス周波数判別器
- Authors: Yuhu Bai, Jiangning Zhang, Zhaofeng Chen, Yuhang Dong, Yunkang Cao, Guanzhong Tian,
- Abstract要約: 本稿では、これらの問題に対処するために、周波数観点からDual-Path Frequency Discriminator (DFD)ネットワークを提案する。
識別者は擬似アノマリーの形で共同表現を学ぶ。
MVTec AD と VisA ベンチマークで行った実験では、DFD が現在の最先端手法を超越していることが示されている。
- 参考スコア(独自算出の注目度): 12.956761809902167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot anomaly detection (FSAD) plays a crucial role in industrial manufacturing. However, existing FSAD methods encounter difficulties leveraging a limited number of normal samples, frequently failing to detect and locate inconspicuous anomalies in the spatial domain. We have further discovered that these subtle anomalies would be more noticeable in the frequency domain. In this paper, we propose a Dual-Path Frequency Discriminators (DFD) network from a frequency perspective to tackle these issues. The original spatial images are transformed into multi-frequency images, making them more conducive to the tailored discriminators in detecting anomalies. Additionally, the discriminators learn a joint representation with forms of pseudo-anomalies. Extensive experiments conducted on MVTec AD and VisA benchmarks demonstrate that our DFD surpasses current state-of-the-art methods. The code is available at \url{https://github.com/yuhbai/DFD}.
- Abstract(参考訳): 工業生産においてFSAD (Few-shot Anomaly Detection) が重要な役割を担っている。
しかし,既存のFSAD法では,通常のサンプルの数が限られているため,空間領域における異常検出や発見が困難であった。
さらに、これらの微妙な異常が周波数領域でより顕著であることが判明した。
本稿では、これらの問題に対処するために、周波数観点からDual-Path Frequency Discriminator (DFD)ネットワークを提案する。
元の空間画像は多周波画像に変換され、異常を検出する際に、調整された識別器により誘導される。
さらに、識別者は擬似アノマリーの形で共同表現を学ぶ。
MVTec AD と VisA のベンチマークで実施された大規模な実験により、DFD が現在の最先端手法を超越していることが示されている。
コードは \url{https://github.com/yuhbai/DFD} で公開されている。
関連論文リスト
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
拡散モデルは、特定のノイズを付加したテスト画像の通常の画像を再構成する傾向がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLADと略す)を提案する。
論文 参考訳(メタデータ) (2024-06-11T17:27:23Z) - Frequency Domain Nuances Mining for Visible-Infrared Person
Re-identification [75.87443138635432]
既存の手法は主に、識別周波数情報を無視しながら空間情報を利用する。
本稿では,周波数領域情報を対象とした周波数領域Nuances Mining(FDNM)手法を提案する。
本手法は,SYSU-MM01データセットにおいて,Ran-1精度が5.2%,mAPが5.8%向上する。
論文 参考訳(メタデータ) (2024-01-04T09:19:54Z) - FS-BAND: A Frequency-Sensitive Banding Detector [55.59101150019851]
バンディング・アーティファクト(Banding artifact)は、階段のような輪郭(contour)として知られ、圧縮や伝達などで発生する一般的な品質の不快さである。
周波数感度バンディング検出器 (FS-BAND) と呼ばれる,帯状アーティファクトを捕捉・評価するための非参照帯状検出モデルを提案する。
実験結果から,FS-BAND法は画像品質評価(IQA)手法よりもバンドリング分類タスクの精度が高い結果を得た。
論文 参考訳(メタデータ) (2023-11-30T03:20:42Z) - Open-Set Multivariate Time-Series Anomaly Detection [7.127829790714167]
時系列異常検出法は、トレーニング期間中に通常のサンプルのみが利用可能であると仮定する。
監視された手法は、通常の異常や観察された異常を分類するために利用することができるが、訓練中に見られる異常に過度に適応する傾向がある。
MOSAD(Multivarate Open-Set Time-Series Anomaly Detector)と呼ばれるオープンセットTSAD問題に対処するアルゴリズムを提案する。
MOSADは、共有表現空間と、生成ヘッド、識別ヘッド、異常認識コントラストヘッドを含む特殊ヘッドを備えた、新しいマルチヘッドTSADフレームワークである。
論文 参考訳(メタデータ) (2023-10-18T19:55:11Z) - DCdetector: Dual Attention Contrastive Representation Learning for Time
Series Anomaly Detection [26.042898544127503]
時系列異常検出は幅広い用途において重要である。
時系列の通常のサンプル分布から逸脱したサンプルを識別することを目的としている。
マルチスケールな二重注意コントラスト表現学習モデルであるDCdetectorを提案する。
論文 参考訳(メタデータ) (2023-06-17T13:40:15Z) - Harnessing Contrastive Learning and Neural Transformation for Time Series Anomaly Detection [0.0]
時系列異常検出(TSAD)は多くの産業応用において重要な役割を担っている。
コントラスト学習は、ラベルのないデータから意味のある表現を抽出する過程において、時系列領域で勢いを増している。
本研究では,学習可能な変換で強化されたウィンドウベースのコントラスト学習戦略を取り入れた新しいアプローチであるCNTを提案する。
論文 参考訳(メタデータ) (2023-04-16T21:36:19Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
本稿では、AFDと呼ばれる2分岐検出フレームワークにおいて、周波数情報を適応的に学習する手法を提案する。
我々は、固定周波数変換からネットワークを解放し、データおよびタスク依存の変換層でより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-03-27T14:25:52Z) - On the Frequency Bias of Generative Models [61.60834513380388]
我々は、最先端のGANトレーニングにおいて、高周波アーティファクトに対する提案手法を解析した。
既存のアプローチでは、スペクトルアーティファクトを完全に解決できないことが分かっています。
以上の結果から,識別能力の向上に大きな可能性があることが示唆された。
論文 参考訳(メタデータ) (2021-11-03T18:12:11Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
クリーンサンプルのみを用いたアンタングル学習に基づく一対一画像異常検出システムを提案する。
3つのデータセットを用いて実験したところ、OIADは90%以上の異常を検出できる一方で、誤報率も低く抑えられることがわかった。
論文 参考訳(メタデータ) (2020-01-18T09:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。