Dual-path Frequency Discriminators for Few-shot Anomaly Detection
- URL: http://arxiv.org/abs/2403.04151v4
- Date: Thu, 22 Aug 2024 14:19:45 GMT
- Title: Dual-path Frequency Discriminators for Few-shot Anomaly Detection
- Authors: Yuhu Bai, Jiangning Zhang, Zhaofeng Chen, Yuhang Dong, Yunkang Cao, Guanzhong Tian,
- Abstract summary: We propose a Dual-Path Frequency Discriminators (DFD) network from a frequency perspective to tackle these issues.
The discriminators learn a joint representation with forms of pseudo-anomalies.
Experiments conducted on MVTec AD and VisA benchmarks demonstrate that our DFD surpasses current state-of-the-art methods.
- Score: 12.956761809902167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot anomaly detection (FSAD) plays a crucial role in industrial manufacturing. However, existing FSAD methods encounter difficulties leveraging a limited number of normal samples, frequently failing to detect and locate inconspicuous anomalies in the spatial domain. We have further discovered that these subtle anomalies would be more noticeable in the frequency domain. In this paper, we propose a Dual-Path Frequency Discriminators (DFD) network from a frequency perspective to tackle these issues. The original spatial images are transformed into multi-frequency images, making them more conducive to the tailored discriminators in detecting anomalies. Additionally, the discriminators learn a joint representation with forms of pseudo-anomalies. Extensive experiments conducted on MVTec AD and VisA benchmarks demonstrate that our DFD surpasses current state-of-the-art methods. The code is available at \url{https://github.com/yuhbai/DFD}.
Related papers
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Frequency Domain Nuances Mining for Visible-Infrared Person
Re-identification [75.87443138635432]
Existing methods mainly exploit the spatial information while ignoring the discriminative frequency information.
We propose a novel Frequency Domain Nuances Mining (FDNM) method to explore the cross-modality frequency domain information.
Our method outperforms the second-best method by 5.2% in Rank-1 accuracy and 5.8% in mAP on the SYSU-MM01 dataset.
arXiv Detail & Related papers (2024-01-04T09:19:54Z) - FS-BAND: A Frequency-Sensitive Banding Detector [55.59101150019851]
Banding artifact, as known as staircase-like contour, is a common quality annoyance that happens in compression, transmission, etc.
We propose a no-reference banding detection model to capture and evaluate banding artifacts, called the Frequency-Sensitive BANding Detector (FS-BAND)
Experimental results show that the proposed FS-BAND method outperforms state-of-the-art image quality assessment (IQA) approaches with higher accuracy in banding classification task.
arXiv Detail & Related papers (2023-11-30T03:20:42Z) - Open-Set Multivariate Time-Series Anomaly Detection [7.127829790714167]
Time-series anomaly detection methods assume that only normal samples are available during the training phase.
Supervised methods can be utilized to classify normal and seen anomalies, but they tend to overfit to the seen anomalies during training.
We propose the first algorithm to address the open-set TSAD problem, called Multivariate Open-Set Time-Series Anomaly Detector (MOSAD)
MOSAD is a novel multi-head TSAD framework with a shared representation space and specialized heads, including the Generative head, the Discriminative head, and the Anomaly-Aware Contrastive head.
arXiv Detail & Related papers (2023-10-18T19:55:11Z) - DCdetector: Dual Attention Contrastive Representation Learning for Time
Series Anomaly Detection [26.042898544127503]
Time series anomaly detection is critical for a wide range of applications.
It aims to identify deviant samples from the normal sample distribution in time series.
We propose DCdetector, a multi-scale dual attention contrastive representation learning model.
arXiv Detail & Related papers (2023-06-17T13:40:15Z) - Hard Nominal Example-aware Template Mutual Matching for Industrial
Anomaly Detection [74.9262846410559]
textbfHard Nominal textbfExample-aware textbfTemplate textbfMutual textbfMatching (HETMM)
textitHETMM aims to construct a robust prototype-based decision boundary, which can precisely distinguish between hard-nominal examples and anomalies.
arXiv Detail & Related papers (2023-03-28T17:54:56Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - On the Frequency Bias of Generative Models [61.60834513380388]
We analyze proposed measures against high-frequency artifacts in state-of-the-art GAN training.
We find that none of the existing approaches can fully resolve spectral artifacts yet.
Our results suggest that there is great potential in improving the discriminator.
arXiv Detail & Related papers (2021-11-03T18:12:11Z) - Multiresolution Knowledge Distillation for Anomaly Detection [10.799350080453982]
Unsupervised representation learning has proved to be a critical component of anomaly detection/localization in images.
The sample size is not often large enough to learn a rich generalizable representation through conventional techniques.
Here, we propose to use the "distillation" of features at various layers of an expert network, pre-trained on ImageNet, into a simpler cloner network to tackle both issues.
arXiv Detail & Related papers (2020-11-22T21:16:35Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
We propose a One-for-all Image Anomaly Detection system based on disentangled learning using only clean samples.
Our experiments with three datasets show that OIAD can detect over $90%$ of anomalies while maintaining a low false alarm rate.
arXiv Detail & Related papers (2020-01-18T09:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.