論文の概要: Preference optimization of protein language models as a multi-objective
binder design paradigm
- arxiv url: http://arxiv.org/abs/2403.04187v1
- Date: Thu, 7 Mar 2024 03:36:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 15:11:59.182544
- Title: Preference optimization of protein language models as a multi-objective
binder design paradigm
- Title(参考訳): 多目的バインダー設計パラダイムとしてのタンパク質言語モデルの優先最適化
- Authors: Pouria Mistani, Venkatesh Mysore
- Abstract要約: 命令の微調整と直接選好最適化に基づく多目的バインダー設計パラダイムを提案する。
提案したアライメント戦略により,ProtGPT2は特定の受容体に条件付けられたバインダーを効果的に設計し,薬物発生性基準を策定できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a multi-objective binder design paradigm based on instruction
fine-tuning and direct preference optimization (DPO) of autoregressive protein
language models (pLMs). Multiple design objectives are encoded in the language
model through direct optimization on expert curated preference sequence
datasets comprising preferred and dispreferred distributions. We show the
proposed alignment strategy enables ProtGPT2 to effectively design binders
conditioned on specified receptors and a drug developability criterion.
Generated binder samples demonstrate median isoelectric point (pI) improvements
by $17\%-60\%$.
- Abstract(参考訳): 自己回帰タンパク質言語モデル(pLM)の命令微調整と直接選好最適化(DPO)に基づく多目的バインダー設計パラダイムを提案する。
複数の設計目的を言語モデルに符号化し,好ましくも好ましくない分布からなる専門家の選好シーケンスデータセットを直接最適化する。
提案したアライメント戦略により,ProtGPT2は特定の受容体に条件付けられたバインダーを効果的に設計し,薬物発生性基準を策定できることを示す。
生成したバインダー試料は, 正中等電点 (pI) の改善を17-60-%$で示した。
関連論文リスト
- Towards Improved Preference Optimization Pipeline: from Data Generation to Budget-Controlled Regularization [14.50339880957898]
我々は、嗜好データ生成と正規化の訓練技術について、より深く検討することで、嗜好最適化パイプラインの改善を目指している。
選好データ生成のために、ペアワイズ比較信号を用いて完了の選好ランキングを導出する反復的なペアワイズランキング機構を提案する。
正規化のトレーニングでは、LLMが好むサンプルの確率をわずかに減少させると、好みの最適化がよりよく収束する傾向が観察される。
論文 参考訳(メタデータ) (2024-11-07T23:03:11Z) - Preference Optimization with Multi-Sample Comparisons [53.02717574375549]
本稿では,マルチサンプル比較を含むポストトレーニングの拡張手法を提案する。
これらのアプローチは、生成的多様性やバイアスといった重要な特徴を捉えられない。
マルチサンプル比較はシングルサンプル比較よりも集団特性の最適化に有効であることを示す。
論文 参考訳(メタデータ) (2024-10-16T00:59:19Z) - Preference Alignment Improves Language Model-Based TTS [76.70693823683091]
選好アライメントアルゴリズムは、報酬モデルの嗜好に合わせてLMを調整し、生成されたコンテンツの望ましさを高める。
1.15B のパラメータ LM に基づく TTS モデルを用いて、嗜好の整合性は常に知性、話者類似性、代用主観的評価スコアを向上することを示した。
論文 参考訳(メタデータ) (2024-09-19T01:58:19Z) - mDPO: Conditional Preference Optimization for Multimodal Large Language Models [52.607764280030196]
直接選好最適化(DPO)は,大規模言語モデル(LLM)のアライメントに有効な手法であることが示されている。
最近の研究は、DPOをマルチモーダルシナリオに適用しようと試みているが、一貫した改善を達成することは困難である。
画像の嗜好を最適化することで、言語のみの嗜好の過度な優先順位付けを防止するマルチモーダルDPOであるmDPOを提案する。
論文 参考訳(メタデータ) (2024-06-17T17:59:58Z) - Hybrid Preference Optimization: Augmenting Direct Preference Optimization with Auxiliary Objectives [0.5120567378386615]
大規模言語モデル(LLM)を協調するハイブリッドアプローチを提案する。
DPO の暗黙的な報酬分解に対する単純な拡張により、任意の補助報酬の集合を最大化するために LLM をチューニングできる。
提案手法であるHybrid Preference Optimization (HPO) は,ユーザの好みと補助的な設計目的の両方に効果的に一般化できることを示す。
論文 参考訳(メタデータ) (2024-05-28T08:35:48Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Annotation-Efficient Preference Optimization for Language Model Alignment [3.726173629675064]
制限付きアノテーション予算を使って効果的な選好データセットを作成する方法を示す。
AEPOを用いてDPO(Direct Preference Optimization)の性能を評価し、同じアノテーション予算で標準DPOを用いてトレーニングしたモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-22T11:23:03Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
我々は、強力な生成AI技術である拡散モデルに注目し、ブラックボックス最適化の可能性について検討する。
本研究では,1)実数値報酬関数のノイズ測定と,2)対比較に基づく人間の嗜好の2種類のラベルについて検討する。
提案手法は,設計最適化問題を条件付きサンプリング問題に再構成し,拡散モデルのパワーを有効活用する。
論文 参考訳(メタデータ) (2024-03-20T00:41:12Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
構造がサンプル効率のよいデータ駆動最適化を実現する方法を示す。
また、FGM構造自体を推定するデータ駆動最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-08T22:33:14Z) - Towards Optimization and Model Selection for Domain Generalization: A
Mixup-guided Solution [43.292274574847234]
そこで本研究では,ドメイン一般化のためのMixupガイドによる最適化と選択手法を提案する。
最適化のために、好みの方向を導出するアウト・オブ・ディストリビューション・データセットを利用する。
モデル選択のために、ターゲット分布に近づいた検証データセットを生成する。
論文 参考訳(メタデータ) (2022-09-01T02:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。