論文の概要: Spatiotemporal Pooling on Appropriate Topological Maps Represented as
Two-Dimensional Images for EEG Classification
- arxiv url: http://arxiv.org/abs/2403.04353v1
- Date: Thu, 7 Mar 2024 09:35:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 14:35:49.967579
- Title: Spatiotemporal Pooling on Appropriate Topological Maps Represented as
Two-Dimensional Images for EEG Classification
- Title(参考訳): 脳波分類のための2次元画像として表現された適切なトポロジカルマップの時空間プール
- Authors: Takuto Fukushima and Ryusuke Miyamoto
- Abstract要約: 脳波(EEG)信号に基づく運動分類は、脳-コンピュータインターフェースの最も重要な応用の1つである。
本研究では,脳波を用いた3つの特徴を持つ新しい運動画像分類法を提案する。
PhysioNet EEG Movement Motor/Imageryデータセットを用いた実験の結果、提案手法は88.57%の最適分類精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motor imagery classification based on electroencephalography (EEG) signals is
one of the most important brain-computer interface applications, although it
needs further improvement. Several methods have attempted to obtain useful
information from EEG signals by using recent deep learning techniques such as
transformers. To improve the classification accuracy, this study proposes a
novel EEG-based motor imagery classification method with three key features:
generation of a topological map represented as a two-dimensional image from EEG
signals with coordinate transformation based on t-SNE, use of the InternImage
to extract spatial features, and use of spatiotemporal pooling inspired by
PoolFormer to exploit spatiotemporal information concealed in a sequence of EEG
images. Experimental results using the PhysioNet EEG Motor Movement/Imagery
dataset showed that the proposed method achieved the best classification
accuracy of 88.57%, 80.65%, and 70.17% on two-, three-, and four-class motor
imagery tasks in cross-individual validation.
- Abstract(参考訳): 脳波(EEG)信号に基づく運動画像分類は脳-コンピュータインターフェースの最も重要な応用の1つであるが、さらなる改善が必要である。
変換器などの最近の深層学習技術を用いて,脳波信号から有用な情報を得る方法がいくつかある。
本研究は,t-sneに基づく座標変換による脳波信号から2次元画像として表現される位相マップの生成,空間特徴抽出のためのinterternimageの使用,eeg画像列に隠された時空間情報を活用するためにpoolformerにインスパイアされた時空間プーリングの利用の3つの特徴を有する,脳波に基づく運動画像分類手法を提案する。
PhysioNet EEG Motor Movement/ Imagery データセットを用いた実験の結果,2-,3-,4-クラスの運動画像タスクにおいて,提案手法が88.57%,80.65%,70.17%の分類精度を達成した。
関連論文リスト
- ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
本稿では3次元EMセグメンテーションのための特殊微調整法であるShapeMamba-EMを提案する。
5つのセグメンテーションタスクと10のデータセットをカバーする、幅広いEMイメージでテストされている。
論文 参考訳(メタデータ) (2024-08-26T08:59:22Z) - Mind's Eye: Image Recognition by EEG via Multimodal Similarity-Keeping Contrastive Learning [2.087148326341881]
本稿では,ゼロショット脳波画像分類のためのMUltimodal similarity-keeper contrastivE学習フレームワークを提案する。
我々は、脳波信号に適した多変量時系列エンコーダを開発し、正規化コントラスト脳波画像事前学習の有効性を評価する。
本手法は,200方向ゼロショット画像分類において,トップ1の精度が19.3%,トップ5の精度が48.8%の最先端性能を実現する。
論文 参考訳(メタデータ) (2024-06-05T16:42:23Z) - Learning Robust Deep Visual Representations from EEG Brain Recordings [13.768240137063428]
本研究は,脳波に基づく深部表現の頑健な学習を行うための2段階の手法を提案する。
ディープラーニングアーキテクチャを用いて,3つのデータセットにまたがる特徴抽出パイプラインの一般化性を実証する。
本稿では,未知の画像を脳波空間に変換し,近似を用いて再構成する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-10-25T10:26:07Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - A Unified Transformer-based Network for multimodal Emotion Recognition [4.07926531936425]
本稿では,心電図/信号の2次元表現と顔情報を組み合わせることで,覚醒空間内の感情を分類するトランスフォーマーに基づく手法を提案する。
我々のモデルは最先端技術に匹敵する結果をもたらす。
論文 参考訳(メタデータ) (2023-08-27T17:30:56Z) - Decoding Natural Images from EEG for Object Recognition [8.411976038504589]
本稿では,脳波信号からの学習画像表現の実現可能性を示すための自己教師型フレームワークを提案する。
我々はトップ1の精度を15.6%、トップ5の精度を42.8%で達成し、200ウェイゼロショットタスクに挑戦する。
これらの発見は、実世界のシナリオにおける神経復号と脳-コンピュータインタフェースの貴重な洞察をもたらす。
論文 参考訳(メタデータ) (2023-08-25T08:05:37Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - A Compact and Interpretable Convolutional Neural Network for
Cross-Subject Driver Drowsiness Detection from Single-Channel EEG [4.963467827017178]
本稿では,ドライバの眠気検出のために,複数の被験者間で共有された脳波特徴を検出するための,コンパクトで解釈可能な畳み込みニューラルネットワークを提案する。
その結果,脳波信号の分類では,被験者11名に対して平均73.22%の精度が得られることがわかった。
論文 参考訳(メタデータ) (2021-05-30T14:36:34Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。