Acceleron: A Tool to Accelerate Research Ideation
- URL: http://arxiv.org/abs/2403.04382v1
- Date: Thu, 7 Mar 2024 10:20:06 GMT
- Title: Acceleron: A Tool to Accelerate Research Ideation
- Authors: Harshit Nigam, Manasi Patwardhan, Lovekesh Vig, Gautam Shroff
- Abstract summary: Acceleron is a research accelerator for different phases of the research life cycle.
It guides researchers through the formulation of a comprehensive research proposal, encompassing a novel research problem.
We leverage the reasoning and domain-specific skills of Large Language Models (LLMs) to create an agent-based architecture.
- Score: 15.578814192003437
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Several tools have recently been proposed for assisting researchers during
various stages of the research life-cycle. However, these primarily concentrate
on tasks such as retrieving and recommending relevant literature, reviewing and
critiquing the draft, and writing of research manuscripts. Our investigation
reveals a significant gap in availability of tools specifically designed to
assist researchers during the challenging ideation phase of the research
life-cycle. To aid with research ideation, we propose `Acceleron', a research
accelerator for different phases of the research life cycle, and which is
specially designed to aid the ideation process. Acceleron guides researchers
through the formulation of a comprehensive research proposal, encompassing a
novel research problem. The proposals motivation is validated for novelty by
identifying gaps in the existing literature and suggesting a plausible list of
techniques to solve the proposed problem. We leverage the reasoning and
domain-specific skills of Large Language Models (LLMs) to create an agent-based
architecture incorporating colleague and mentor personas for LLMs. The LLM
agents emulate the ideation process undertaken by researchers, engaging
researchers in an interactive fashion to aid in the development of the research
proposal. Notably, our tool addresses challenges inherent in LLMs, such as
hallucinations, implements a two-stage aspect-based retrieval to manage
precision-recall trade-offs, and tackles issues of unanswerability. As
evaluation, we illustrate the execution of our motivation validation and method
synthesis workflows on proposals from the ML and NLP domain, given by 3
distinct researchers. Our observations and evaluations provided by the
researchers illustrate the efficacy of the tool in terms of assisting
researchers with appropriate inputs at distinct stages and thus leading to
improved time efficiency.
Related papers
- Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
An exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions.
Recent developments in large language models(LLMs) suggest a promising avenue for automating the generation of novel research ideas.
We propose a Chain-of-Ideas(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain.
arXiv Detail & Related papers (2024-10-17T03:26:37Z) - What is the Role of Large Language Models in the Evolution of Astronomy Research? [0.0]
ChatGPT and other state-of-the-art large language models (LLMs) are rapidly transforming multiple fields.
These models, commonly trained on vast datasets, exhibit human-like text generation capabilities.
arXiv Detail & Related papers (2024-09-30T12:42:25Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
Large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery.
No evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas.
arXiv Detail & Related papers (2024-09-06T08:25:03Z) - Reconciling Methodological Paradigms: Employing Large Language Models as Novice Qualitative Research Assistants in Talent Management Research [1.0949553365997655]
This study proposes a novel approach by leveraging Retrieval Augmented Generation (RAG) based Large Language Models (LLMs) for analyzing interview transcripts.
The novelty of this work lies in strategizing the research inquiry as one that is augmented by an LLM that serves as a novice research assistant.
Our findings demonstrate that the LLM-augmented RAG approach can successfully extract topics of interest, with significant coverage compared to manually generated topics.
arXiv Detail & Related papers (2024-08-20T17:49:51Z) - LLAssist: Simple Tools for Automating Literature Review Using Large Language Models [0.0]
LLAssist is an open-source tool designed to streamline literature reviews in academic research.
It uses Large Language Models (LLMs) and Natural Language Processing (NLP) techniques to automate key aspects of the review process.
arXiv Detail & Related papers (2024-07-19T02:48:54Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is a large language model-powered research idea writing agent.
It generates problems, methods, and experiment designs while iteratively refining them based on scientific literature.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - Apprentices to Research Assistants: Advancing Research with Large Language Models [0.0]
Large Language Models (LLMs) have emerged as powerful tools in various research domains.
This article examines their potential through a literature review and firsthand experimentation.
arXiv Detail & Related papers (2024-04-09T15:53:06Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.