Efficient Off-Policy Learning for High-Dimensional Action Spaces
- URL: http://arxiv.org/abs/2403.04453v3
- Date: Mon, 17 Feb 2025 11:58:32 GMT
- Title: Efficient Off-Policy Learning for High-Dimensional Action Spaces
- Authors: Fabian Otto, Philipp Becker, Ngo Anh Vien, Gerhard Neumann,
- Abstract summary: Existing off-policy reinforcement learning algorithms often rely on an explicit state-action-value function representation.
We present an efficient approach that utilizes only a state-value function as the critic for off-policy deep reinforcement learning.
- Score: 22.129001951441015
- License:
- Abstract: Existing off-policy reinforcement learning algorithms often rely on an explicit state-action-value function representation, which can be problematic in high-dimensional action spaces due to the curse of dimensionality. This reliance results in data inefficiency as maintaining a state-action-value function in such spaces is challenging. We present an efficient approach that utilizes only a state-value function as the critic for off-policy deep reinforcement learning. This approach, which we refer to as Vlearn, effectively circumvents the limitations of existing methods by eliminating the necessity for an explicit state-action-value function. To this end, we leverage a weighted importance sampling loss for learning deep value functions from off-policy data. While this is common for linear methods, it has not been combined with deep value function networks. This transfer to deep methods is not straightforward and requires novel design choices such as robust policy updates, twin value function networks to avoid an optimization bias, and importance weight clipping. We also present a novel analysis of the variance of our estimate compared to commonly used importance sampling estimators such as V-trace. Our approach improves sample complexity as well as final performance and ensures consistent and robust performance across various benchmark tasks. Eliminating the state-action-value function in Vlearn facilitates a streamlined learning process, yielding high-return agents.
Related papers
- Online Reinforcement Learning-Based Dynamic Adaptive Evaluation Function for Real-Time Strategy Tasks [5.115170525117103]
Effective evaluation of real-time strategy tasks requires adaptive mechanisms to cope with dynamic and unpredictable environments.
This study proposes a method to improve evaluation functions for real-time responsiveness to battle-field situation changes.
arXiv Detail & Related papers (2025-01-07T14:36:33Z) - Confidence-Conditioned Value Functions for Offline Reinforcement
Learning [86.59173545987984]
We propose a new form of Bellman backup that simultaneously learns Q-values for any degree of confidence with high probability.
We theoretically show that our learned value functions produce conservative estimates of the true value at any desired confidence.
arXiv Detail & Related papers (2022-12-08T23:56:47Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Offline Policy Optimization with Eligible Actions [34.4530766779594]
offline policy optimization could have a large impact on many real-world decision-making problems.
Importance sampling and its variants are a commonly used type of estimator in offline policy evaluation.
We propose an algorithm to avoid this overfitting through a new per-state-neighborhood normalization constraint.
arXiv Detail & Related papers (2022-07-01T19:18:15Z) - Near-optimal Offline Reinforcement Learning with Linear Representation:
Leveraging Variance Information with Pessimism [65.46524775457928]
offline reinforcement learning seeks to utilize offline/historical data to optimize sequential decision-making strategies.
We study the statistical limits of offline reinforcement learning with linear model representations.
arXiv Detail & Related papers (2022-03-11T09:00:12Z) - Offline Reinforcement Learning with Implicit Q-Learning [85.62618088890787]
Current offline reinforcement learning methods need to query the value of unseen actions during training to improve the policy.
We propose an offline RL method that never needs to evaluate actions outside of the dataset.
This method enables the learned policy to improve substantially over the best behavior in the data through generalization.
arXiv Detail & Related papers (2021-10-12T17:05:05Z) - A Boosting Approach to Reinforcement Learning [59.46285581748018]
We study efficient algorithms for reinforcement learning in decision processes whose complexity is independent of the number of states.
We give an efficient algorithm that is capable of improving the accuracy of such weak learning methods.
arXiv Detail & Related papers (2021-08-22T16:00:45Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.