Quantum theory of molecular orientations: topological classification, complete entanglement, and fault-tolerant encodings
- URL: http://arxiv.org/abs/2403.04572v3
- Date: Thu, 02 Jan 2025 16:11:52 GMT
- Title: Quantum theory of molecular orientations: topological classification, complete entanglement, and fault-tolerant encodings
- Authors: Victor V. Albert, Eric Kubischta, Mikhail Lemeshko, Lee R. Liu,
- Abstract summary: We formulate a quantum phase space for molecular rotational and nuclear-spin states.
We classify molecules into three types -- asymmetric, rotationally symmetric, and perrotationally symmetric.
We identify molecular species whose position states house an internal pseudo-spin or "fiber" degree of freedom.
- Score: 0.4999814847776097
- License:
- Abstract: We formulate a quantum phase space for molecular rotational and nuclear-spin states. Taking in molecular geometry and nuclear-spin data, we reproduce a molecule's admissible angular momentum states known from spectroscopy, introduce its angular position states using quantization theory, and develop a generalized Fourier transform converting between the two. We classify molecules into three types -- asymmetric, rotationally symmetric, and perrotationally symmetric -- with the last type having no macroscopic analogue due to nuclear-spin statistics constraints. We discuss two general features in perrotationally symmetric state spaces that are Hamiltonian-independent and induced solely by symmetry and spin statistics. First, we quantify when and how the state space of a molecular species is completely rotation-spin entangled, meaning that it does not admit any separable states. Second, we identify molecular species whose position states house an internal pseudo-spin or "fiber" degree of freedom, and the fiber's Berry phase or matrix after adiabatic changes in position yields naturally robust operations, akin to braiding anyonic quasiparticles or realizing fault-tolerant quantum gates. We outline how the fiber can be used as a quantum error-correcting code and discuss scenarios where these features can be experimentally probed.
Related papers
- Decoherence-induced self-dual criticality in topological states of matter [0.9961452710097684]
We discuss the role of self-dual symmetry -- a fundamental notion in theoretical physics -- in mixed states.
We show that the decoherence of electric and magnetic vortices from the 2D bulk of the toric code can leave a (1+1)D quantum critical mixed state.
An explicit breaking of the self-duality, by incoherent noise amounting to fermion interactions or non-interacting coherent deformation, is shown to induce an RG crossover.
arXiv Detail & Related papers (2025-02-19T19:00:02Z) - Bit symmetry entails the symmetry of the quantum transition probability [0.0]
We show that bit symmetry implicates the symmetry of the transition probabilities between the atoms.
We conclude that bit symmetry rules out all models but the classical cases and in the simple Euclidean Jordan algebras.
arXiv Detail & Related papers (2024-11-27T18:31:45Z) - Quantum jamming brings quantum mechanics to macroscopic scales [0.0]
Kinetic constraints can enrich such a description by setting apart different species of quasiparticles.
We study dynamics following a local unjamming perturbation in a jammed state.
arXiv Detail & Related papers (2023-07-27T16:18:39Z) - Quantum circuits to measure scalar spin chirality [0.5134254313682964]
In quantum information, the scalar spin chirality is a witness of genuine tripartite entanglement.
We propose an indirect measurement scheme, based on the Hadamard test, to estimate the scalar spin chirality for general quantum states.
We show a single-shot determination of the scalar chirality is possible for chirality eigenstates, via quantum phase estimation with a single auxiliary qutrit.
arXiv Detail & Related papers (2023-06-26T16:05:06Z) - Entangled Collective Spin States of Two Species Ultracold atoms in a
Ring [0.0]
We study the general quantum Hamiltonian that can be realized with two species of degenerate ultracold atoms in a ring-shaped trap.
We examine the spectrum and the states with a collective spin picture in a Dicke state basis.
The density of states for the full Hamiltonian shows features as of phase transition in varying between linear and quadratic limits.
arXiv Detail & Related papers (2023-03-15T04:11:59Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.