End-to-end Conditional Robust Optimization
- URL: http://arxiv.org/abs/2403.04670v1
- Date: Thu, 7 Mar 2024 17:16:59 GMT
- Title: End-to-end Conditional Robust Optimization
- Authors: Abhilash Chenreddy and Erick Delage
- Abstract summary: Conditional Robust Optimization (CRO) combines uncertainty quantification with robust optimization to promote safety and reliability in high stake applications.
We propose a novel end-to-end approach to train a CRO model in a way that accounts for both the empirical risk of the prescribed decisions and the quality of conditional coverage of the contextual uncertainty set that supports them.
We show that the proposed training algorithms produce decisions that outperform the traditional estimate then optimize approaches.
- Score: 6.363653898208231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of Contextual Optimization (CO) integrates machine learning and
optimization to solve decision making problems under uncertainty. Recently, a
risk sensitive variant of CO, known as Conditional Robust Optimization (CRO),
combines uncertainty quantification with robust optimization in order to
promote safety and reliability in high stake applications. Exploiting modern
differentiable optimization methods, we propose a novel end-to-end approach to
train a CRO model in a way that accounts for both the empirical risk of the
prescribed decisions and the quality of conditional coverage of the contextual
uncertainty set that supports them. While guarantees of success for the latter
objective are impossible to obtain from the point of view of conformal
prediction theory, high quality conditional coverage is achieved empirically by
ingeniously employing a logistic regression differentiable layer within the
calculation of coverage quality in our training loss. We show that the proposed
training algorithms produce decisions that outperform the traditional estimate
then optimize approaches.
Related papers
- End-to-End Conformal Calibration for Optimization Under Uncertainty [32.844953018302874]
This paper develops an end-to-end framework to learn the uncertainty estimates for conditional optimization.
In addition, we propose to represent arbitrary convex uncertainty sets with partially convex neural networks.
Our approach consistently improves upon two-stage-then-optimize.
arXiv Detail & Related papers (2024-09-30T17:38:27Z) - A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization [3.124884279860061]
We introduce AGRO, a solution algorithm that performs adversarial generation for two-stage adaptive robust optimization.
AGRO generates high-dimensional contingencies that are simultaneously adversarial and realistic.
We show that AGRO outperforms the standard column-and-constraint algorithm by up to 1.8% in production-distribution planning and up to 11.6% in power system expansion.
arXiv Detail & Related papers (2024-09-05T17:42:19Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Conformal Contextual Robust Optimization [21.2737854880866]
Data-driven approaches to predict probabilistic decision-making problems seek to mitigate the risk of uncertainty region mis robustness in safety-critical settings.
We propose a Conformal-Then-Predict (CPO) framework for.
probability-then-optimize decision-making problems.
arXiv Detail & Related papers (2023-10-16T01:58:27Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
Many real-world optimization problems uncertain parameters with probability can be estimated using contextual feature information.
In contrast to the standard approach of estimating the distribution of uncertain parameters, we propose an integrated conditional estimation approach.
We show that our ICEO approach is theally consistent under moderate conditions.
arXiv Detail & Related papers (2021-10-24T04:49:35Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Chance Constrained Policy Optimization for Process Control and
Optimization [1.4908563154226955]
Chemical process optimization and control are affected by 1) plant-model mismatch, 2) process disturbances, and 3) constraints for safe operation.
We propose a chance constrained policy optimization algorithm which guarantees the satisfaction of joint chance constraints with a high probability.
arXiv Detail & Related papers (2020-07-30T14:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.