End-to-End Conformal Calibration for Optimization Under Uncertainty
- URL: http://arxiv.org/abs/2409.20534v1
- Date: Mon, 30 Sep 2024 17:38:27 GMT
- Title: End-to-End Conformal Calibration for Optimization Under Uncertainty
- Authors: Christopher Yeh, Nicolas Christianson, Alan Wu, Adam Wierman, Yisong Yue,
- Abstract summary: This paper develops an end-to-end framework to learn the uncertainty estimates for conditional optimization.
In addition, we propose to represent arbitrary convex uncertainty sets with partially convex neural networks.
Our approach consistently improves upon two-stage-then-optimize.
- Score: 32.844953018302874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning can significantly improve performance for decision-making under uncertainty in a wide range of domains. However, ensuring robustness guarantees requires well-calibrated uncertainty estimates, which can be difficult to achieve in high-capacity prediction models such as deep neural networks. Moreover, in high-dimensional settings, there may be many valid uncertainty estimates, each with their own performance profile - i.e., not all uncertainty is equally valuable for downstream decision-making. To address this problem, this paper develops an end-to-end framework to learn the uncertainty estimates for conditional robust optimization, with robustness and calibration guarantees provided by conformal prediction. In addition, we propose to represent arbitrary convex uncertainty sets with partially input-convex neural networks, which are learned as part of our framework. Our approach consistently improves upon two-stage estimate-then-optimize baselines on concrete applications in energy storage arbitrage and portfolio optimization.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and adversarial actors.
We present a forecasting framework ensuring valid uncertainty estimates regardless of how data evolves.
arXiv Detail & Related papers (2024-09-27T21:46:42Z) - A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization [3.124884279860061]
We introduce AGRO, a solution algorithm that performs adversarial generation for two-stage adaptive robust optimization.
AGRO generates high-dimensional contingencies that are simultaneously adversarial and realistic.
We show that AGRO outperforms the standard column-and-constraint algorithm by up to 1.8% in production-distribution planning and up to 11.6% in power system expansion.
arXiv Detail & Related papers (2024-09-05T17:42:19Z) - End-to-end Conditional Robust Optimization [6.363653898208231]
Conditional Robust Optimization (CRO) combines uncertainty quantification with robust optimization to promote safety and reliability in high stake applications.
We propose a novel end-to-end approach to train a CRO model in a way that accounts for both the empirical risk of the prescribed decisions and the quality of conditional coverage of the contextual uncertainty set that supports them.
We show that the proposed training algorithms produce decisions that outperform the traditional estimate then optimize approaches.
arXiv Detail & Related papers (2024-03-07T17:16:59Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Conformal Contextual Robust Optimization [21.2737854880866]
Data-driven approaches to predict probabilistic decision-making problems seek to mitigate the risk of uncertainty region mis robustness in safety-critical settings.
We propose a Conformal-Then-Predict (CPO) framework for.
probability-then-optimize decision-making problems.
arXiv Detail & Related papers (2023-10-16T01:58:27Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Conformal Uncertainty Sets for Robust Optimization [0.0]
We use Mahalanobis distance as a novel function for multi-target regression and the construction of joint prediction regions.
We also connect conformal prediction regions to robust optimization, providing finite sample valid and conservative uncertainty sets.
arXiv Detail & Related papers (2021-05-31T13:42:24Z) - The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing
Platforms [10.86298377998459]
We propose an efficient framework for predictive uncertainty estimation in NNs deployed on embedded edge systems.
The framework is built from the ground up to provide predictive uncertainty based only on one forward pass.
Our approach not only obtains robust and accurate uncertainty estimations but also outperforms state-of-the-art methods in terms of systems performance.
arXiv Detail & Related papers (2021-02-11T11:44:32Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.